目录python
# 导入相关库 import numpy as np import pandas as pd """ 拼接 有两个DataFrame,都存储了用户的一些信息,如今要拼接起来,组成一个DataFrame,如何实现呢? """ data1 = { "name": ["Tom", "Bob"], "age": [18, 30], "city": ["Bei Jing ", "Shang Hai "] } df1 = pd.DataFrame(data=data1) df1 Out[85]: name age city 0 Tom 18 Bei Jing 1 Bob 30 Shang Hai data2 = { "name": ["Mary", "James"], "age": [35, 18], "city": ["Guang Zhou", "Shen Zhen"] } df2 = pd.DataFrame(data=data2) df2 Out[86]: name age city 0 Mary 35 Guang Zhou 1 James 18 Shen Zhen
def append(self, other, ignore_index=False,verify_integrity=False, sort=None):
append 是最简单的拼接两个DataFrame的方法。app
df1.append(df2) Out[87]: name age city 0 Tom 18 Bei Jing 1 Bob 30 Shang Hai 0 Mary 35 Guang Zhou 1 James 18 Shen Zhen
能够看到,拼接后的索引默认仍是原有的索引,若是想要从新生成索引的话,设置参数 ignore_index=True 便可。spa
df1.append(df2, ignore_index=True) Out[88]: name age city 0 Tom 18 Bei Jing 1 Bob 30 Shang Hai 2 Mary 35 Guang Zhou 3 James 18 Shen Zhen
除了 append 这种方式以外,还有 concat 这种方式能够实现相同的功能。blog
pd.concat(objs, axis=0, join='outer', join_axes=None, ignore_index=False, keys=None, levels=None, names=None, verify_integrity=False, sort=None, copy=True):
例子索引
objs=[df1, df2] pd.concat(objs, ignore_index=True) Out[89]: name age city 0 Tom 18 Bei Jing 1 Bob 30 Shang Hai 2 Mary 35 Guang Zhou 3 James 18 Shen Zhen
若是想要区分出不一样的DataFrame的数据,能够经过设置参数 keys,固然得设置参数 ignore_index=False。ci
pd.concat(objs, ignore_index=False, keys=["df1", "df2"]) Out[90]: name age city df1 0 Tom 18 Bei Jing 1 Bob 30 Shang Hai df2 0 Mary 35 Guang Zhou 1 James 18 Shen Zhen
有两个DataFrame,分别存储了用户的部分信息,如今须要将用户的这些信息关联起来,如何实现呢?pandas
def merge(self, right, how='inner', on=None, left_on=None, right_on=None, left_index=False, right_index=False, sort=False, suffixes=('_x', '_y'), copy=True, indicator=False, validate=None):
经过 pd.merge 能够关联两个DataFrame,这里咱们设置参数 on="name",表示依据 name 来做为关联键。默认how='inner',咱们能够设置成outerit
data1 = { "name": ["Tom", "Bob", "Mary", "James"], "age": [18, 30, 35, 18], "city": ["Bei Jing ", "Shang Hai ", "Guang Zhou", "Shen Zhen"] } df1 = pd.DataFrame(data=data1) df1 data2 = {"name": ["Bob", "Mary", "James", "Andy"], "sex": ["male", "female", "male", np.nan], "income": [8000, 8000, 4000, 6000] } df2 = pd.DataFrame(data=data2) df2 pd.merge(df1,df2,on="name") Out[91]: name age city sex income 0 Bob 30 Shang Hai male 8000 1 Mary 35 Guang Zhou female 8000 2 James 18 Shen Zhen male 4000 #关联后发现数据变少了,只有 3 行数据,这是由于默认关联的方式是 inner,若是不想丢失任何数据,能够设置参数 how="outer"。 pd.merge(df1,df2,on="name",how="outer") Out[92]: name age city sex income 0 Tom 18.0 Bei Jing NaN NaN 1 Bob 30.0 Shang Hai male 8000.0 2 Mary 35.0 Guang Zhou female 8000.0 3 James 18.0 Shen Zhen male 4000.0 4 Andy NaN NaN NaN 6000.0
若是咱们想保留左边全部的数据,能够设置参数 how="left";反之,若是想保留右边的全部数据,能够设置参数 how="right"class
pd.merge(df1, df2, on="name", how="left") Out[93]: name age city sex income 0 Tom 18 Bei Jing NaN NaN 1 Bob 30 Shang Hai male 8000.0 2 Mary 35 Guang Zhou female 8000.0 3 James 18 Shen Zhen male 4000.0
有时候,两个 DataFrame 中须要关联的键的名称不同,能够经过 left_on 和 right_on 来分别设置。import
df1.rename(columns={"name": "name1"}, inplace=True) df1 Out[94]: name1 age city 0 Tom 18 Bei Jing 1 Bob 30 Shang Hai 2 Mary 35 Guang Zhou 3 James 18 Shen Zhen df2.rename(columns={"name": "name2"}, inplace=True) df2 Out[95]: name2 sex income 0 Bob male 8000 1 Mary female 8000 2 James male 4000 3 Andy NaN 6000 pd.merge(df1, df2, left_on="name1", right_on="name2") Out[96]: name1 age city name2 sex income 0 Bob 30 Shang Hai Bob male 8000 1 Mary 35 Guang Zhou Mary female 8000 2 James 18 Shen Zhen James male 4000
有时候,两个DataFrame中都包含相同名称的字段,如何处理呢?
咱们能够设置参数 suffixes,默认 suffixes=('_x', '_y') 表示将相同名称的左边的DataFrame的字段名加上后缀 _x,右边加上后缀 _y。
df1["sex"] = "male" df1 Out[97]: name1 age city sex 0 Tom 18 Bei Jing male 1 Bob 30 Shang Hai male 2 Mary 35 Guang Zhou male 3 James 18 Shen Zhen male pd.merge(df1, df2, left_on="name1", right_on="name2") Out[98]: name1 age city sex_x name2 sex_y income 0 Bob 30 Shang Hai male Bob male 8000 1 Mary 35 Guang Zhou male Mary female 8000 2 James 18 Shen Zhen male James male 4000 pd.merge(df1, df2, left_on="name1", right_on="name2", suffixes=("_left", "_right")) Out[99]: name1 age city sex_left name2 sex_right income 0 Bob 30 Shang Hai male Bob male 8000 1 Mary 35 Guang Zhou male Mary female 8000 2 James 18 Shen Zhen male James male 4000
def join(self, other, on=None, how='left', lsuffix='', rsuffix='',sort=False):
除了 merge 这种方式外,还能够经过 join 这种方式实现关联。相比 merge,join 这种方式有如下几个不一样:
(1)默认参数on=None,表示关联时使用左边和右边的索引做为键,设置参数on能够指定的是关联时左边的所用到的键名
(2)左边和右边字段名称重复时,经过设置参数 lsuffix 和 rsuffix 来解决。
df1.join(df2.set_index("name2"), on="name1", lsuffix="_left") Out[100]: name1 age city sex_left sex income 0 Tom 18 Bei Jing male NaN NaN 1 Bob 30 Shang Hai male male 8000.0 2 Mary 35 Guang Zhou male female 8000.0 3 James 18 Shen Zhen male male 4000.0