Python机器学习基础教程-第2章-监督学习之决策树集成

前言

本系列教程基本就是摘抄《Python机器学习基础教程》中的例子内容。html

为了便于跟踪和学习,本系列教程在Github上提供了jupyter notebook 版本:node

Github仓库:https://github.com/Holy-Shine/Introduciton-2-ML-with-Python-notebookpython

系列教程总目录
Python机器学习基础教程git

引子

导入必要的包github

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import mglearn
import os
%matplotlib inline

集成(ensemble)是合并多个机器学习模型来构建更强大模型的方法。在机器学习文献中有许多模型都属于这一类,但已证实有两种集成模型对大量分类和回归的数据集都是有效的,两者都以决策树为基础,分别是随机森林(random forest)和梯度提高决策树(gradient boosted decision tree)。算法

1. 随机森林

咱们刚刚说过,决策树的一个主要缺点在于常常对训练数据过拟合。随机森林是解决这个问题的一种方法。随机森林本质上是许多决策树的集合,其中每棵树都和其余树略有不一样。随机森林背后的思想是,每棵树的预测可能都相对较好,但可能对部分数据过拟合。若是构造不少树,而且每棵树的预测都很好,但都以不一样的方式过拟合,那么咱们能够对这些树的结果取平均值来下降过拟合。既能减小过拟合又能保持树的预测能力,这能够在数学上严格证实。bootstrap

为了实现这一策略,咱们须要构造许多决策树。每棵树都应该对目标值作出能够接受的预测,还应该与其余树不一样。随机森林的名字来自于将随机性添加到树的构造过程当中,以确保每棵树都各不相同。随机森林中树的随机化方法有两种:一种是经过选择用于构造树的数据点,另外一种是经过选择每次划分测试的特征。咱们来更深刻地研究这一过程。dom

1.1 构造随机森林

想要构造一个随机森林模型,你须要肯定用于构造的树的个数( RandomForestRegressor 或 RandomForestClassifier 的 n_estimators 参数)。好比咱们想要构造 10 棵树。这些树在构造时彼此彻底独立,算法对每棵树进行不一样的随机选择,以确保树和树之间是有区别的。想要构造一棵树,首先要对数据进行自助采样(bootstrap sample)。也就是说,从 n_samples 个数据点中有放回地(即同同样本能够被屡次抽取)重复随机抽取一个样本,共抽取n_samples 次。这样会建立一个与原数据集大小相同的数据集,但有些数据点会缺失(大约三分之一),有些会重复。机器学习

举例说明,好比咱们想要建立列表 ['a', 'b', 'c', 'd'] 的自助采样。一种可能的自主采样是 ['b', 'd', 'd', 'c'] ,另外一种可能的采样为 ['d', 'a', 'd', 'a'] 。性能

接下来,基于这个新建立的数据集来构造决策树。可是,要对咱们在介绍决策树时描述的算法稍做修改。在每一个结点处,算法随机选择特征的一个子集,并对其中一个特征寻找最佳测试,而不是对每一个结点都寻找最佳测试。选择的特征个数由 max_features 参数来控制。每一个结点中特征子集的选择是相互独立的,这样树的每一个结点可使用特征的不一样子集来作出决策。

因为使用了自助采样,随机森林中构造每棵决策树的数据集都是略有不一样的因为每一个结点的特征选择,每棵树中的每次划分都是基于特征的不一样子集。这两种方法共同保证随机森林中全部树都不相同。

在这个过程当中的一个关键参数是 max_features 。若是咱们设置 max_features 等于n_features ,那么每次划分都要考虑数据集的全部特征,在特征选择的过程当中没有添加随机性(不过自助采样依然存在随机性)。若是设置 max_features 等于 1 ,那么在划分时将没法选择对哪一个特征进行测试,只能对随机选择的某个特征搜索不一样的阈值。所以,若是 max_features 较大,那么随机森林中的树将会十分类似,利用最独特的特征能够轻松拟合数据。若是 max_features 较小,那么随机森林中的树将会差别很大,为了很好地拟合数据,每棵树的深度都要很大。

想要利用随机森林进行预测,算法首先对森林中的每棵树进行预测。对于回归问题,咱们能够对这些结果取平均值做为最终预测。对于分类问题,则用到了“软投票”(soft voting)策略。也就是说,每一个算法作出“软”预测,给出每一个可能的输出标签的几率。对全部树的预测几率取平均值,而后将几率最大的类别做为预测结果。

1.2 分析随机森林

下面将由 5 棵树组成的随机森林应用到前面研究过的 two_moons 数据集上:

from sklearn.ensemble import RandomForestClassifier
from sklearn.datasets import make_moons
from sklearn.model_selection import train_test_split

X,y = make_moons(n_samples=100, noise=0.25, random_state=3)
X_train, X_test, y_train, y_test = train_test_split(X, y, stratify=y, random_state=42)

forest = RandomForestClassifier(n_estimators=5, random_state=2)
forest.fit(X_train, y_train)

做为随机森林的一部分,树被保存在 estimator_ 属性中。咱们将每棵树学到的决策边界可视化,也将它们的总预测(即整个森林作出的预测)可视化(图 2-33):

fig, axes = plt.subplots(2, 3, figsize=(20,10))
for i, (ax, tree) in enumerate(zip(axes.ravel(), forest.estimators_)):
    ax.set_title("Tree {}".format(i))
    mglearn.plots.plot_tree_partition(X_train, y_train, tree, ax=ax)
mglearn.plots.plot_2d_separator(forest, X_train, fill=True, ax=axes[-1,-1], alpha=.4)
axes[-1,-1].set_title("Random Forest")
mglearn.discrete_scatter(X_train[:, 0], X_train[:, 1], y_train)
图 2-33:5 棵随机化的决策树找到的决策边界,以及将它们的预测几率取平均后获得的决策边界

你能够清楚地看到,这 5 棵树学到的决策边界大不相同。每棵树都犯了一些错误,由于这里画出的一些训练点实际上并无包含在这些树的训练集中,缘由在于自助采样。

随机森林比单独每一棵树的过拟合都要小,给出的决策边界也更符合直觉。在任何实际应用中,咱们会用到更多棵树(一般是几百或上千),从而获得更平滑的边界。

再举一个例子,咱们将包含 100 棵树的随机森林应用在乳腺癌数据集上:

from sklearn.datasets import load_breast_cancer
cancer = load_breast_cancer()

X_train, X_test, y_train, y_test = train_test_split(cancer.data, cancer.target, random_state=0)
forest = RandomForestClassifier(n_estimators=100, random_state=0)
forest.fit(X_train, y_train)

print("Accuracy on training set: {:.3f}".format(forest.score(X_train, y_train)))
print("Accuracy on test set: {:.3f}".format(forest.score(X_test, y_test)))

[out]

Accuracy on training set: 1.000
Accuracy on test set: 0.972

在没有调节任何参数的状况下,随机森林的精度为 97%,比线性模型或单棵决策树都要好。咱们能够调节 max_features 参数,或者像单棵决策树那样进行预剪枝。可是,随机森林的默认参数一般就已经能够给出很好的结果。

与决策树相似,随机森林也能够给出特征重要性,计算方法是将森林中全部树的特征重要性求和并取平均。通常来讲,随机森林给出的特征重要性要比单棵树给出的更为可靠。参见图 2-34。

def plot_feature_importance_cancer(model):
    n_features = cancer.data.shape[1]
    plt.barh(range(n_features), model.feature_importances_, align='center')
    plt.yticks(np.arange(n_features), cancer.feature_names)
    plt.xlabel("Feature importance")
    plt.ylabel("Feature")

plot_feature_importance_cancer(forest)
图 2-34:拟合乳腺癌数据集获得的随机森林的特征重要性

如你所见,与单棵树相比,随机森林中有更多特征的重要性不为零。与单棵决策树相似,随机森林也给了“worst radius”(最大半径)特征很大的重要性,但从整体来看,它实际上却选择“worst perimeter”(最大周长)做为信息量最大的特征。因为构造随机森林过程当中的随机性,算法须要考虑多种可能的解释,结果就是随机森林比单棵树更能从整体把握数据的特征。

1.3 优势、缺点和参数。

用于回归和分类的随机森林是目前应用最普遍的机器学习方法之一。这种方法很是强大,一般不须要反复调节参数就能够给出很好的结果,也不须要对数据进
行缩放。

从本质上看,随机森林拥有决策树的全部优势,同时弥补了决策树的一些缺陷。仍然使用决策树的一个缘由是须要决策过程的紧凑表示。基本上不可能对几十棵甚至上百棵树作出详细解释,随机森林中树的深度每每比决策树还要大(由于用到了特征子集)。所以,若是你须要以可视化的方式向非专家总结预测过程,那么选择单棵决策树可能更好。虽然在大型数据集上构建随机森林可能比较费时间,但在一台计算机的多个 CPU 内核上并行计算也很容易。若是你用的是多核处理器(几乎全部的现代化计算机都是),你能够用 n_jobs 参数来调节使用的内核个数。使用更多的 CPU 内核,可让速度线性增长(使用 2 个内核,随机森林的训练速度会加倍),但设置 n_jobs 大于内核个数是没有用的。你能够设置 n_jobs=-1 来使用计算机的全部内核

你应该记住,随机森林本质上是随机的,设置不一样的随机状态(或者不设置 random_state参数)能够完全改变构建的模型。森林中的树越多,它对随机状态选择的鲁棒性就越好。若是你但愿结果能够重现,固定 random_state 是很重要的。

对于维度很是高的稀疏数据(好比文本数据),随机森林的表现每每不是很好。对于这种数据,使用线性模型可能更合适。即便是很是大的数据集,随机森林的表现一般也很好,训练过程很容易并行在功能强大的计算机的多个 CPU 内核上。不过,随机森林须要更大的内存,训练和预测的速度也比线性模型要慢。对一个应用来讲,若是时间和内存很重要的话,那么换用线性模型可能更为明智。

须要调节的重要参数有 n_estimators 和 max_features ,可能还包括预剪枝选项(如 max_depth )。 n_estimators 老是越大越好。对更多的树取平都可以下降过拟合,从而获得鲁棒性更好的集成。不过收益是递减的,并且树越多须要的内存也越多,训练时间也越长。经常使用的经验法则就是“在你的时间 / 内存容许的状况下尽可能多”。

前面说过, max_features 决定每棵树的随机性大小,较小的 max_features 能够下降过拟合。通常来讲,好的经验就是使用默认值:对于分类,默认值是 max_features=sqrt(n_features) ;对于回归,默认值是 max_features=n_features 。增大 max_features 或 max_leaf_nodes 有时也能够提升性能。它还能够大大下降用于训练和预测的时间和空间要求。

2. 梯度提高回归树(梯度提高机)

梯度提高回归树是另外一种集成方法,经过合并多个决策树来构建一个更为强大的模型。虽然名字中含有“回归”,但这个模型既能够用于回归也能够用于分类。与随机森林方法不一样,梯度提高采用连续的方式构造树,每棵树都试图纠正前一棵树的错误。默认状况下,梯度提高回归树中没有随机化,而是用到了强预剪枝。梯度提高树一般使用深度很小(1 到 5 之间)的树,这样模型占用的内存更少,预测速度也更快。

梯度提高背后的主要思想是合并许多简单的模型(在这个语境中叫做弱学习器),好比深度较小的树。每棵树只能对部分数据作出好的预测,所以,添加的树愈来愈多,能够不断迭代提升性能。

梯度提高树常常是机器学习竞赛的优胜者,而且普遍应用于业界。与随机森林相比,它一般对参数设置更为敏感,但若是参数设置正确的话,模型精度更高。

除了预剪枝与集成中树的数量以外,梯度提高的另外一个重要参数是 learning_rate (学习率),用于控制每棵树纠正前一棵树的错误的强度。较高的学习率意味着每棵树均可以作出较强的修正,这样模型更为复杂。经过增大 n_estimators 来向集成中添加更多树,也能够增长模型复杂度,由于模型有更多机会纠正训练集上的错误。

下面是在乳腺癌数据集上应用 GradientBoostingClassifier 的示例。默认使用 100 棵树,最大深度是 3,学习率为 0.1:

from sklearn.ensemble import GradientBoostingClassifier

X_trian, X_test, y_train, y_test = train_test_split(cancer.data, cancer.target, random_state=0)

gbrt = GradientBoostingClassifier(random_state=0)
gbrt.fit(X_train, y_train)

print("Accuracy on training set: {:.3f}".format(gbrt.score(X_train, y_train)))
print("Accuracy on test set: {:.3f}".format(gbrt.score(X_test, y_test)))

[out]

Accuracy on training set: 1.000
Accuracy on test set: 0.958

因为训练集精度达到 100%,因此极可能存在过拟合。为了下降过拟合,咱们能够限制最大深度来增强预剪枝,也能够下降学习率:

gbrt = GradientBoostingClassifier(random_state=0, max_depth=1)
gbrt.fit(X_train,y_train)

print("Accuracy on training set: {:.3f}".format(gbrt.score(X_train, y_train)))
print("Accuracy on test set: {:.3f}".format(gbrt.score(X_test, y_test)))

[out]

Accuracy on training set: 0.991
Accuracy on test set: 0.972

gbrt = GradientBoostingClassifier(random_state=0, learning_rate=0.01)
gbrt.fit(X_train, y_train)
print("Accuracy on training set: {:.3f}".format(gbrt.score(X_train, y_train)))
print("Accuracy on test set: {:.3f}".format(gbrt.score(X_test, y_test)))

[out]

Accuracy on training set: 0.988
Accuracy on test set: 0.965

下降模型复杂度的两种方法都下降了训练集精度,这和预期相同。在这个例子中,减少树的最大深度显著提高了模型性能,而下降学习率仅稍稍提升了泛化性能。

对于其余基于决策树的模型,咱们也能够将特征重要性可视化,以便更好地理解模型(图 2-35)。因为咱们用到了 100 棵树,因此即便全部树的深度都是 1,查看全部树也是不现实的:

gbrt = GradientBoostingClassifier(random_state=0, max_depth=1)
gbrt.fit(X_train, y_train)
plot_feature_importance_cancer(gbrt)
图 2-35:用于拟合乳腺癌数据集的梯度提高分类器给出的特征重要性

能够看到,梯度提高树的特征重要性与随机森林的特征重要性有些相似,不过梯度提高彻底忽略了某些特征。

因为梯度提高和随机森林两种方法在相似的数据上表现得都很好,所以一种经常使用的方法就是先尝试随机森林,它的鲁棒性很好。若是随机森林效果很好,但预测时间太长,或者机器学习模型精度小数点后第二位的提升也很重要,那么切换成梯度提高一般会有用。

若是你想要将梯度提高应用在大规模问题上,能够研究一下 xgboost 包及其 Python 接口,在写做本书时,这个库在许多数据集上的速度都比 scikit-learn 对梯度提高的实现要快(有时调参也更简单)。

2.1 优势、缺点和参数。

梯度提高决策树是监督学习中最强大也最经常使用的模型之一。其主要缺点是须要仔细调参,并且训练时间可能会比较长。与其余基于树的模型相似,这一算法不须要对数据进行缩放就能够表现得很好,并且也适用于二元特征与连续特征同时存在的数据集。与其余基于树的模型相同,它也一般不适用于高维稀疏数据。(1是训练时间慢,2是特征选择会浪费大量的有效特征)

梯度提高树模型的主要参数包括树的数量 n_estimators 和学习率 learning_rate ,后者用于控制每棵树对前一棵树的错误的纠正强度。这两个参数高度相关,由于 learning_rate 越低,就须要更多的树来构建具备类似复杂度的模型。随机森林的 n_estimators 值老是越大越好,但梯度提高不一样,增大 n_estimators 会致使模型更加复杂,进而可能致使过拟合。一般的作法是根据时间和内存的预算选择合适的 n_estimators ,而后对不一样的learning_rate 进行遍历。

另外一个重要参数是 max_depth (或 max_leaf_nodes ),用于下降每棵树的复杂度。梯度提高模型的 max_depth 一般都设置得很小,通常不超过 5。

相关文章
相关标签/搜索