Redis缓存数据库

缓存数据库介绍

  NoSQL(NoSQL = Not Only SQL ),意即“不只仅是SQL”,泛指非关系型的数据库,随着互联网web2.0网站的兴起,传统的关系数据库在应付web2.0网站,特别是超大规模和高并发的SNS类型的web2.0纯动态网站已经显得力不从心,暴露了不少难以克服的问题,而非关系型的数据库则因为其自己的特色获得了很是迅速的发展。NoSQL数据库的产生就是为了解决大规模数据集合多重数据种类带来的挑战,尤为是大数据应用难题。python

NoSQL数据库的四大分类

键值(Key-Value)存储数据库git

  这一类数据库主要会使用到一个哈希表,这个表中有一个特定的键和一个指针指向特定的数据。Key/value模型对于IT系统来讲的优点在于简单、易部署。可是若是DBA只对部分值进行查询或更新的时候,Key/value就显得效率低下了。[3]  举例如:Tokyo Cabinet/Tyrant, Redis, Voldemort, Oracle BDB.github

列存储数据库web

  这部分数据库一般是用来应对分布式存储的海量数据。键仍然存在,可是它们的特色是指向了多个列。这些列是由列家族来安排的。如:Cassandra、HBase、Riak。redis

文档型数据库算法

  文档型数据库的灵感是来自于Lotus Notes办公软件的,并且它同第一种键值存储相相似。该类型的数据模型是版本化的文档,半结构化的文档以特定的格式存储,好比JSON。文档型数据库能够看做是键值数据库的升级版,容许之间嵌套键值。并且文档型数据库比键值数据库的查询效率更高。如:CouchDB, MongoDb. 国内也有文档型数据库SequoiaDB,已经开源。sql

图形(Graph)数据库数据库

  图形结构的数据库同其余行列以及刚性结构的SQL数据库不一样,它是使用灵活的图形模型,而且可以扩展到多个服务器上。NoSQL数据库没有标准的查询语言(SQL),所以进行数据库查询须要制定数据模型。许多NoSQL数据库都有REST式的数据接口或者查询API。[2]   如:Neo4J, InfoGrid, Infinite Graph.
所以,咱们总结NoSQL数据库在如下的这几种状况下比较适用:一、数据模型比较简单;二、须要灵活性更强的IT系统;三、对数据库性能要求较高;四、不须要高度的数据一致性;五、对于给定key,比较容易映射复杂值的环境。

NoSQL数据库的四大分类表格分析

分类 Examples举例 典型应用场景 数据模型 优势 缺点
键值(key-value)[3]  Tokyo Cabinet/Tyrant, Redis, Voldemort, Oracle BDB 内容缓存,主要用于处理大量数据的高访问负载,也用于一些日志系统等等。[3]  Key 指向 Value 的键值对,一般用hash table来实现[3]  查找速度快 数据无结构化,一般只被看成字符串或者二进制数据[3] 
列存储数据库[3]  Cassandra, HBase, Riak 分布式的文件系统 以列簇式存储,将同一列数据存在一块儿 查找速度快,可扩展性强,更容易进行分布式扩展 功能相对局限
文档型数据库[3]  CouchDB, MongoDb Web应用(与Key-Value相似,Value是结构化的,不一样的是数据库可以了解Value的内容) Key-Value对应的键值对,Value为结构化数据 数据结构要求不严格,表结构可变,不须要像关系型数据库同样须要预先定义表结构 查询性能不高,并且缺少统一的查询语法。
图形(Graph)数据库[3]  Neo4J, InfoGrid, Infinite Graph 社交网络,推荐系统等。专一于构建关系图谱 图结构 利用图结构相关算法。好比最短路径寻址,N度关系查找等 不少时候须要对整个图作计算才能得出须要的信息,并且这种结构不太好作分布式的集群方案。[3] 

 

redis

介绍

  redis是业界主流的key-value nosql 数据库之一。和Memcached相似,它支持存储的value类型相对更多,包括string(字符串)、list(链表)、set(集合)、zset(sorted set --有序集合)和hash(哈希类型)。这些数据类型都支持push/pop、add/remove及取交集并集和差集及更丰富的操做,并且这些操做都是原子性的。在此基础上,redis支持各类不一样方式的排序。与memcached同样,为了保证效率,数据都是缓存在内存中。区别的是redis会周期性的把更新的数据写入磁盘或者把修改操做写入追加的记录文件,而且在此基础上实现了master-slave(主从)同步。缓存

Redis优势

  • 异常快速 : Redis是很是快的,每秒能够执行大约110000设置操做,81000个/每秒的读取操做。服务器

  • 支持丰富的数据类型 : Redis支持最大多数开发人员已经知道如列表,集合,可排序集合,哈希等数据类型。

    这使得在应用中很容易解决的各类问题,由于咱们知道哪些问题处理使用哪一种数据类型更好解决。
  • 操做都是原子的 : 全部 Redis 的操做都是原子,从而确保当两个客户同时访问 Redis 服务器获得的是更新后的值(最新值)。

  • MultiUtility工具:Redis是一个多功能实用工具,能够在不少如:缓存,消息传递队列中使用(Redis原生支持发布/订阅),在应用程序中,如:Web应用程序会话,网站页面点击数等任何短暂的数据;

Redis安装和基本使用

1、安装Redis环境

要在 Ubuntu 上安装 Redis,打开终端,而后输入如下命令:
$sudo apt-get update
$sudo apt-get install redis-server
这将在您的计算机上安装Redis

启动 Redis

$redis-server

查看 redis 是否还在运行

$redis-cli
这将打开一个 Redis 提示符,以下图所示:
redis 127.0.0.1:6379>
在上面的提示信息中:127.0.0.1 是本机的IP地址,6379是 Redis 服务器运行的端口。如今输入 PING 命令,以下图所示:
redis 127.0.0.1:6379> ping
PONG
这说明如今你已经成功地在计算机上安装了 Redis。
 

2、Python操做Redis

sudo pip install redis
or
sudo easy_install redis
or
源码安装
 
详见:https://github.com/WoLpH/redis-py

在Ubuntu上安装Redis桌面管理器

要在Ubuntu 上安装 Redis桌面管理,能够从 http://redisdesktop.com/download 下载包并安装它。

Redis 桌面管理器会给你用户界面来管理 Redis 键和数据。
 

Redis API使用

redis-py 的API的使用能够分类为:

  • 链接方式
  • 链接池
  • 操做
    • String 操做
    • Hash 操做
    • List 操做
    • Set 操做
    • Sort Set 操做
  • 管道
  • 发布订阅

链接方式

一、操做模式

  redis-py提供两个类Redis和StrictRedis用于实现Redis的命令,StrictRedis用于实现大部分官方的命令,并使用官方的语法和命令,Redis是StrictRedis的子类,用于向后兼容旧版本的redis-py。

import redis
  
r = redis.Redis(host='10.211.55.4', port=6379)
r.set('foo', 'Bar')
print r.get('foo')

 

二、链接池

  redis-py使用connection pool来管理对一个redis server的全部链接,避免每次创建、释放链接的开销。默认,每一个Redis实例都会维护一个本身的链接池。能够直接创建一个链接池,而后做为参数Redis,这样就能够实现多个Redis实例共享一个链接池。

 

操做

在python上的操做关键字和命令行某些关键字有点差异,文中并无所有标出!

经常使用操做

delete(*names)

# 根据删除redis中的任意数据类型 (和命令行不一样,del)

exists(name)

# 检测redis的name是否存在

keys(pattern='*')

# 根据模型获取redis的name
 
# 更多:
    # KEYS * 匹配数据库中全部 key 。
    # KEYS h?llo 匹配 hello , hallo 和 hxllo 等。
    # KEYS h*llo 匹配 hllo 和 heeeeello 等。
    # KEYS h[ae]llo 匹配 hello 和 hallo ,但不匹配 hillo

expire(name ,time)

# 为某个redis的某个name设置超时时间

rename(src, dst)

# 对redis的name重命名为

move(name, db))

# 将redis的某个值移动到指定的db下

randomkey()

# 随机获取一个redis的name(不删除)

type(name)

# 获取name对应值的类型

scan(cursor=0, match=None, count=None)
scan_iter(match=None, count=None)

# 同字符串操做,用于增量迭代获取key

 

 

1. String操做

redis中的String在在内存中按照一个name对应一个value来存储。如图:

set(name, value, ex=None, px=None, nx=False, xx=False)

在Redis中设置值,默认,不存在则建立,存在则修改
参数:
     ex,过时时间(秒)
     px,过时时间(毫秒)
     nx,若是设置为True,则只有name不存在时,当前set操做才执行
     xx,若是设置为True,则只有name存在时,岗前set操做才执行

setnx(name, value)

设置值,只有name不存在时,执行设置操做(添加)

setex(name, time, value)

# 设置值
# 参数:
    # time,过时时间(数字秒 或 timedelta对象)

psetex(name, value, time_ms)

# 设置值
# 参数:
    # time_ms,过时时间(数字毫秒 或 timedelta对象)

mset(*args, **kwargs)

批量设置值
如:
    mset(k1='v1', k2='v2')
    或
    mget({'k1': 'v1', 'k2': 'v2'})

get(name)

获取值

mget(keys, *args)

批量获取
如:
    mget('ylr', 'wupeiqi')
    或
    r.mget(['ylr', 'wupeiqi'])

getset(name, value)

设置新值并获取原来的值

getrange(key, start, end)

# 获取子序列(根据字节获取,非字符)
# 参数:
    # name,Redis 的 name
    # start,起始位置(字节)
    # end,结束位置(字节)
# 如: "jack" ,0-2表示 "jac"

setrange(name, offset, value)

# 修改字符串内容,从指定字符串索引开始向后替换(新值太长时,则向后覆盖)
# 参数:
    # offset,字符串的索引,字节(一个汉字三个字节)
    # value,要设置的值

setbit(name, offset, value)

# 对name对应值的二进制表示的位进行操做
 
# 参数:
    # name,redis的name
    # offset,位的索引(将值变换成二进制后再进行索引)
    # value,值只能是 1 或 0
 
# 注:若是在Redis中有一个对应: name= "jack",
        那么字符串foo的二进制表示为:01101010 01100001 01100011 0b1101011
    因此,若是执行 setbit('name', 3, 1),则就会将第3位设置为1,
        那么最终二进制则变成 01111010 01100001 01100011 0b1101011,即:"zack"
 
# 扩展,转换二进制表示:
  # source = "武沛齐"
    source = "foo"
 
    for i in source:
        num = ord(i)
        print bin(num).replace('b','')
 
    特别的,若是source是汉字 "武沛齐"怎么办?
    答:对于utf-8,每个汉字占 3 个字节,那么 "武沛齐" 则有 9个字节
       对于汉字,for循环时候会按照 字节 迭代,那么在迭代时,将每个字节转换 十进制数,而后再将十进制数转换成二进制
        11100110 10101101 10100110 11100110 10110010 10011011 11101001 10111101 10010000
        -------------------------- ----------------------------- -----------------------------
                    武                         沛                           齐

*用途举例,用最省空间的方式,存储在线用户数及分别是哪些用户在线

getbit(name, offset)

# 获取name对应的值的二进制表示中的某位的值 (0或1)

bitcount(key, start=None, end=None)

# 获取name对应的值的二进制表示中 1 的个数
# 参数:
    # key,Redis的name
    # start,位起始位置
    # end,位结束位置

strlen(name)

# 返回name对应值的字节长度(一个汉字3个字节)

incr(self, name, amount=1)

# 自增 name对应的值,当name不存在时,则建立name=amount,不然,则自增。
 
# 参数:
    # name,Redis的name
    # amount,自增数(必须是整数)
 
# 注:同incrby

incrbyfloat(self, name, amount=1.0)

# 自增 name对应的值,当name不存在时,则建立name=amount,不然,则自增。
 
# 参数:
    # name,Redis的name
    # amount,自增数(浮点型)

decr(self, name, amount=1)

# 自减 name对应的值,当name不存在时,则建立name=amount,不然,则自减。
 
# 参数:
    # name,Redis的name
    # amount,自减数(整数)

append(key, value)

# 在redis name对应的值后面追加内容
 
# 参数:
    key, redis的name
    value, 要追加的字符串

 

2. Hash操做

  hash表现形式上有些像pyhton中的dict,能够存储一组关联性较强的数据 , redis中Hash在内存中的存储格式以下图:

 

hset(name, key, value)

# name对应的hash中设置一个键值对(不存在,则建立;不然,修改)
 
# 参数:
    # name,redis的name
    # key,name对应的hash中的key
    # value,name对应的hash中的value
 
# 注:
    # hsetnx(name, key, value),当name对应的hash中不存在当前key时则建立(至关于添加)

hmset(name, mapping)

# 在name对应的hash中批量设置键值对
 
# 参数:
    # name,redis的name
    # mapping,字典,如:{'k1':'v1', 'k2': 'v2'}
 
# 如:
    # r.hmset('xx', {'k1':'v1', 'k2': 'v2'})

hget(name,key)

# 在name对应的hash中获取根据key获取value

hmget(name, keys, *args)

# 在name对应的hash中获取多个key的值
 
# 参数:
    # name,reids对应的name
    # keys,要获取key集合,如:['k1', 'k2', 'k3']
    # *args,要获取的key,如:k1,k2,k3
 
# 如:
    # r.mget('xx', ['k1', 'k2'])
    #
    # print r.hmget('xx', 'k1', 'k2')

hgetall(name)

获取name对应hash的全部键值

hlen(name)

# 获取name对应的hash中键值对的个数

hkeys(name)

# 获取name对应的hash中全部的key的值

hvals(name)

# 获取name对应的hash中全部的value的值

hexists(name, key)

# 检查name对应的hash是否存在当前传入的key

hdel(name,*keys)

# 将name对应的hash中指定key的键值对删除

hincrby(name, key, amount=1)

# 自增name对应的hash中的指定key的值,不存在则建立key=amount
# 参数:
    # name,redis中的name
    # key, hash对应的key
    # amount,自增数(整数)

hincrbyfloat(name, key, amount=1.0)

# 自增name对应的hash中的指定key的值,不存在则建立key=amount
 
# 参数:
    # name,redis中的name
    # key, hash对应的key
    # amount,自增数(浮点数)
 
# 自增name对应的hash中的指定key的值,不存在则建立key=amount

hscan(name, cursor=0, match=None, count=None)

Start a full hash scan with:

HSCAN myhash 0

Start a hash scan with fields matching a pattern with:

HSCAN myhash 0 MATCH order_*

Start a hash scan with fields matching a pattern and forcing the scan command to do more scanning with:

HSCAN myhash 0 MATCH order_* COUNT 1000

# 增量式迭代获取,对于数据大的数据很是有用,hscan能够实现分片的获取数据,并不是一次性将数据所有获取完,从而放置内存被撑爆
 
# 参数:
    # name,redis的name
    # cursor,游标(基于游标分批取获取数据)
    # match,匹配指定key,默认None 表示全部的key
    # count,每次分片最少获取个数,默认None表示采用Redis的默认分片个数
 
# 如:
    # 第一次:cursor1, data1 = r.hscan('xx', cursor=0, match=None, count=None)
    # 第二次:cursor2, data1 = r.hscan('xx', cursor=cursor1, match=None, count=None)
    # ...
    # 直到返回值cursor的值为0时,表示数据已经经过分片获取完毕

hscan_iter(name, match=None, count=None)

# 利用yield封装hscan建立生成器,实现分批去redis中获取数据
  
# 参数:
    # match,匹配指定key,默认None 表示全部的key
    # count,每次分片最少获取个数,默认None表示采用Redis的默认分片个数
  
# 如:
    # for item in r.hscan_iter('xx'):
    #     print item

 

3. list

List操做,redis中的List在在内存中按照一个name对应一个List来存储。如图:

 

lpush(name,values)

# 在name对应的list中添加元素,每一个新的元素都添加到列表的最左边
 
# 如:
    # r.lpush('oo', 11,22,33)
    # 保存顺序为: 33,22,11
 
# 扩展:
    # rpush(name, values) 表示从右向左操做

lpushx(name,value)

# 在name对应的list中添加元素,只有name已经存在时,值添加到列表的最左边
 
# 更多:
    # rpushx(name, value) 表示从右向左操做

lrange(name, start, end)

# 在name对应的列表分片获取数据
# 参数:
    # name,redis的name
    # start,索引的起始位置
    # end,索引结束位置 
  #全部:(0 -1)

llen(name)

# name对应的list元素的个数

linsert(name, where, refvalue, value))

# 在name对应的列表的某一个值前或后插入一个新值
 
# 参数:
    # name,redis的name,即list的名字
    # where,BEFORE或AFTER,插在前或后
    # refvalue,标杆值,即:在这个值前或后插入数据
    # value,要插入的数据

lset(name, index, value)

# 对name对应的list中的某一个索引位置从新赋值
 
# 参数:
    # name,redis的name
    # index,list的索引位置
    # value,要设置的值

lrem(name, value, num)

# 在name对应的list中删除指定的值
 
# 参数:
    # name,redis的name
    # value,要删除的值
    # num,  num=0,删除列表中全部的指定值;
           # num=2,从前到后,删除2个;
           # num=-2,从后向前,删除2个

lpop(name)

# 在name对应的列表的左侧获取第一个元素并在列表中移除,返回值则是第一个元素
 
# 更多:
    # rpop(name) 表示从右向左操做

lindex(name, index)

#在name对应的列表中根据索引获取列表元素

ltrim(name, start, end)

# 在name对应的列表中移除没有在start-end索引之间的值
# 参数:
    # name,redis的name
    # start,索引的起始位置
    # end,索引结束位置

rpoplpush(src, dst)

# 从一个列表取出最右边的元素,同时将其添加至另外一个列表的最左边
# 参数:
    # src,要取数据的列表的name
    # dst,要添加数据的列表的name

blpop(keys, timeout)

# 将多个列表排列,按照从左到右去pop对应列表的元素
 
# 参数:
    # keys,redis的name的集合
    # timeout,超时时间,当元素全部列表的元素获取完以后,阻塞等待列表内有数据的时间(秒), 0 表示永远阻塞
 
# 更多:
    # r.brpop(keys, timeout),从右向左获取数据

brpoplpush(src, dst, timeout=0)

# 从一个列表的右侧移除一个元素并将其添加到另外一个列表的左侧
 
# 参数:
    # src,取出并要移除元素的列表对应的name
    # dst,要插入元素的列表对应的name
    # timeout,当src对应的列表中没有数据时,阻塞等待其有数据的超时时间(秒),0 表示永远阻塞

 

4.set集合操做

Set操做,Set集合就是不容许重复的列表

sadd(name,values)

# name对应的集合中添加元素

scard(name)

#获取name对应的集合中元素个数

smembers(name)

# 获取name对应的集合的全部成员

srem(name, values)

# 在name对应的集合中删除某些值

sdiff(keys, *args)

#在第一个name对应的集合中且不在其余name对应的集合的元素集合

sdiffstore(dest, keys, *args)

# 获取第一个name对应的集合中且不在其余name对应的集合,再将其新加入到dest对应的集合中

sinter(keys, *args)

# 获取多一个name对应集合的交集

sinterstore(dest, keys, *args)

# 获取多一个name对应集合的交集,再讲其加入到dest对应的集合中

smove(src, dst, value)

# 将某个成员从一个集合中移动到另一个集合

spop(name)

# 从集合的右侧(尾部)移除一个成员,并将其返回

srandmember(name, numbers)

# 从name对应的集合中随机获取 numbers 个元素

sunion(keys, *args)

# 获取多一个name对应的集合的并集

sunionstore(dest,keys, *args)

# 获取多一个name对应的集合的并集,并将结果保存到dest对应的集合中

sscan(name, cursor=0, match=None, count=None)
sscan_iter(name, match=None, count=None)

# 同字符串的操做,用于增量迭代分批获取元素,避免内存消耗太大

 


有序集合,在集合的基础上,为每元素排序;元素的排序须要根据另一个值来进行比较,因此,对于有序集合,每个元素有两个值,即:值和分数,分数专门用来作排序。

zadd(name, *args, **kwargs)

# 在name对应的有序集合中添加元素
# 如:
     # zadd('zz', 'n1', 1, 'n2', 2)
     #
     # zadd('zz', n1=11, n2=22)

zcard(name)

# 获取name对应的有序集合元素的数量

zcount(name, min, max)

# 获取name对应的有序集合中分数 在 [min,max] 之间的个数

zincrby(name, value, amount)

# 自增name对应的有序集合的 name 对应的分数

zrange( name, start, end, desc=False, withscores=False, score_cast_func=float)

# 按照索引范围获取name对应的有序集合的元素
 
# 参数:
    # name,redis的name
    # start,有序集合索引发始位置(非分数)
    # end,有序集合索引结束位置(非分数)
    # desc,排序规则,默认按照分数从小到大排序
    # withscores,是否获取元素的分数,默认只获取元素的值
    # score_cast_func,对分数进行数据转换的函数
 
# 更多:
    # 从大到小排序
    # zrevrange(name, start, end, withscores=False, score_cast_func=float)
 
    # 按照分数范围获取name对应的有序集合的元素
    # zrangebyscore(name, min, max, start=None, num=None, withscores=False, score_cast_func=float)
    # 从大到小排序
    # zrevrangebyscore(name, max, min, start=None, num=None, withscores=False, score_cast_func=float)

zrank(name, value)

# 获取某个值在 name对应的有序集合中的排行(从 0 开始)
 
# 更多:
    # zrevrank(name, value),从大到小排序

zrem(name, values)

# 删除name对应的有序集合中值是values的成员
 
# 如:zrem('zz', ['s1', 's2'])

zremrangebyrank(name, min, max)

# 根据排行范围删除

zremrangebyscore(name, min, max)

# 根据分数范围删除

zscore(name, value)

# 获取name对应有序集合中 value 对应的分数

zinterstore(dest, keys, aggregate=None)

# 获取两个有序集合的交集,若是遇到相同值不一样分数,则按照aggregate进行操做
# aggregate的值为:  SUM  MIN  MAX

zunionstore(dest, keys, aggregate=None)

# 获取两个有序集合的并集,若是遇到相同值不一样分数,则按照aggregate进行操做
# aggregate的值为:  SUM  MIN  MAX

zscan(name, cursor=0, match=None, count=None, score_cast_func=float)
zscan_iter(name, match=None, count=None,score_cast_func=float)

# 同字符串类似,相较于字符串新增score_cast_func,用来对分数进行操做

 

管道

  redis-py默认在执行每次请求都会建立(链接池申请链接)和断开(归还链接池)一次链接操做,若是想要在一次请求中指定多个命令,则可使用pipline实现一次请求指定多个命令,而且默认状况下一次pipline 是原子性操做。

#!/usr/bin/env python
# -*- coding:utf-8 -*-
 
import redis
 
pool = redis.ConnectionPool(host='10.211.55.4', port=6379)
 
r = redis.Redis(connection_pool=pool)
 
# pipe = r.pipeline(transaction=False)
pipe = r.pipeline(transaction=True)
 
pipe.set('name', 'alex')
pipe.set('role', 'sb')
 
pipe.execute()

 

发布订阅

发布者:服务器

订阅者:Dashboad和数据处理

Demo以下:

import redis


class RedisHelper:

    def __init__(self):
        self.__conn = redis.Redis(host='10.211.55.4')
        self.chan_sub = 'fm104.5'
        self.chan_pub = 'fm104.5'

    def public(self, msg):
        self.__conn.publish(self.chan_pub, msg)
        return True

    def subscribe(self):
        pub = self.__conn.pubsub()
        pub.subscribe(self.chan_sub)
        pub.parse_response()
        return pub
redis helper

订阅者:

#!/usr/bin/env python
# -*- coding:utf-8 -*-
 
from monitor.RedisHelper import RedisHelper
 
obj = RedisHelper()
redis_sub = obj.subscribe()
 
while True:
    msg= redis_sub.parse_response()
    print msg

发布者:

#!/usr/bin/env python
# -*- coding:utf-8 -*-
 
from monitor.RedisHelper import RedisHelper
 
obj = RedisHelper()
obj.public('hello')

 

更多参见:https://github.com/andymccurdy/redis-py/

http://doc.redisfans.com/

相关文章
相关标签/搜索