机器学习算法之降维

  在机器学习的过程中,我们经常会遇见过拟合的问题。而输入数据或features的维度过高就是导致过拟合的问题之一。。维度越高,你的数据在每个特征维度上的分布就越稀疏,这对机器学习算法基本都是灾难性的。所有出现了很多降维的方法。今天我们要讨论的就是LDA降维。 LDA降维的思路是:如果两类数据线性可分,即:存在一个超平面,将两类数据分开。则:存在模旋转向量,将两类数据投影到一维上,并且依然是线性可
相关文章
相关标签/搜索