golang协程机制很方便的解决了并发编程的问题,可是协程并非没有开销的,因此也须要适当限制一下数量。github
func (p *converter) upload(bytes [][]byte) ([]string, error) { ch := make(chan struct{}, 4) wg := &sync.WaitGroup{} wg.Add(len(bytes)) ret := make([]string, len(bytes)) // 上传 for index, item := range bytes { ch <- struct{}{} go func(index int, imageData []byte) { defer func() { wg.Done() <-ch }() link, err := qiniu.UploadBinary(imageData, fmt.Sprintf("%d.png", time.Now().UnixNano())) if err != nil { log.Println("上传图片失败", err.Error()) return } ret[index] = link }(index, item) } wg.Wait() return ret, nil }
须要实现的需求有两个:golang
bytes切片长度
func (p *converter) upload(bytes [][]byte) ([]string, error) { ret := make([]string, len(bytes)) pool := goroutine_pool.New(4, len(bytes)) for index, item := range bytes { index := index item := item pool.Submit(func() { link, err := qiniu.UploadBinary(item, fmt.Sprintf("%d.png", time.Now().UnixNano())) if err != nil { log.Println("上传图片失败", err.Error()) return } ret[index] = link }) } pool.Wait() return ret, nil }
能够看到最大的区别是只须要关注业务逻辑便可,并发控制和等待都已经被协程池接管编程
但愿本文能减轻你控制协程的负担并发