NO.5 算法测试(词条统计)

 1、安装Eclipsejava

    下载Eclipse,解压安装,例如安装到/usr/local,即/usr/local/eclipseapache

    4.3.1版本下载地址:http://pan.baidu.com/s/1eQkpRguapp

2、在eclipse上安装hadoop插件
 
   一、下载hadoop插件(就是一个jar包文件:hadoop-eclipse-plugin-1.2.1.jar)
 
   二、把插件放到eclipse/plugins目录下
 
   三、重启eclipse,按以下步骤配置Hadoop installation directory。 

     若是插件安装成功,打开Windows—Preferences后,在窗口左侧会有Hadoop Map/Reduce选项,点击此选项,在窗口右侧设置Hadoop安装路径。框架

 

四、配置Map/Reduce Locationseclipse

     打开Windows—Open Perspective—Other函数

搜索“Map”
    选择Map/Reduce,点击OK

    在右下方看到以下图所示oop

点击Map/Reduce Location选项卡,点击右边小象图标,打开Hadoop Location配置窗口:spa

    输入Location Name,任意名称便可.配置Map/Reduce Master和DFS Mastrer,Host和Port配置成与core-site.xml的设置一致便可。.net

点击"Finish"按钮,关闭窗口。插件

 点击左侧的DFSLocations—>myhadoop(上一步配置的location name),如能看到user,表示安装成功

 

 若是以下图所示表示安装失败,请检查Hadoop是否启动,以及eclipse配置是否正确。使用eclipse版本与jdk的版本对应,能够多安装几个jdk,灵活切换调用。

 

3、新建WordCount项目

    File—>Project,选择Map/Reduce Project,输入项目名称WordCount等。

    在WordCount项目里新建class,名称为WordCount,代码以下:

 
import java.io.IOException;
 
import java.util.StringTokenizer;
 
import org.apache.hadoop.conf.Configuration;
 
import org.apache.hadoop.fs.Path;
 
import org.apache.hadoop.io.IntWritable;
 
import org.apache.hadoop.io.Text;
 
import org.apache.hadoop.mapreduce.Job;
 
import org.apache.hadoop.mapreduce.Mapper;
 
import org.apache.hadoop.mapreduce.Reducer;
 
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
 
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
 
import org.apache.hadoop.util.GenericOptionsParser;
 
public class WordCount {
                 public static class TokenizerMapper extends Mapper<Object, Text, Text, IntWritable>{                 
                                 private final static IntWritable one = new IntWritable(1);                               
                                 private Text word = new Text();                   
                                 public void map(Object key, Text value, Context context) throws IOException, InterruptedException {                               
                                                                StringTokenizer itr = new StringTokenizer(value.toString());                                                               
                                                                 while (itr.hasMoreTokens()) {
                                                                
                                                                                 word.set(itr.nextToken());
                                                                                
                                                                                context.write( word,one );
                                                                }
                                }
                }
 
                 public static class IntSumReducer extends Reducer<Text,IntWritable,Text,IntWritable> {
                
                                 private IntWritable result = new IntWritable();
                                
                                 public void reduce(Text key, Iterable<IntWritable> values,Context context) throws IOException, InterruptedException {                        
                                                 int sum = 0;
                                                
                                                 for (IntWritable val : values) {
                                                
                                                                sum += val.get();                                              
                                                }
                                                
                                                 result.set(sum);
                                                
                                                context.write(key, result);     
                                }
                }
 
                 public static void main(String[] args) throws Exception {
                                Configuration conf = new Configuration();
                                
                                String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
                                
                                 if (otherArgs.length != 2) {                      
                                                System. err.println("Usage: wordcount <in> <out>" );                                               
                                                System. exit(2);
                                }
                                
                                Job job = new Job(conf, "word count" );
                                
                                job.setJarByClass(WordCount. class);
                                
                                job.setMapperClass(TokenizerMapper. class);
                                
                                job.setCombinerClass(IntSumReducer. class);
                                
                                job.setReducerClass(IntSumReducer. class);
                                
                                job.setOutputKeyClass(Text. class);
                                
                                job.setOutputValueClass(IntWritable. class);
                                
                                FileInputFormat. addInputPath(job, new Path(otherArgs[0]));
                                
                                FileOutputFormat. setOutputPath(job, new Path(otherArgs[1]));
                                
                                System. exit(job.waitForCompletion(true) ? 0 : 1);
                }
}
 
 
4、运行
     一、在HDFS上建立目录input
        hadoop fs -mkdir input
或者在Eclipse中的使用快捷功能

 

二、拷贝本地Test1.txt 到HDFS的input里

         hadoop fs -copyFromLocal /usr/root/Test1.txt input

三、点击WordCount.java,右键,点击Run As—>Run Configurations,配置运行参数,即输入和输出文件夹

hdfs://localhost:9000/user/root/input         hdfs://localhost:9000/user/root/output

点击Run按钮,运行程序。

四、运行完成后,查看运行结果

        方法1:
        hadoop fs -ls output
        能够看到有两个输出结果,_SUCCESS和part-r-00000
        执行hadoop fs -cat output/*
 

        方法2:

        展开DFS Locations,以下图所示,双击打开part-r00000查看结果

////////////////////////////////////////////////////////////////////////////

小结: Hadoop程序处理流程

     (1)将文件拆分为splits,并由MapReduce框架自动完成分割,将每个split分割为<key,value>对

     (2)每一对<key,value>调用一次map函数,处理后生产新的<key,value>对,由Context传递给reduce处理

     (3)Mapper对<key,value>对进行按key值进行排序,并执行Combine过程,将key值相同的value进行合并。最后获得Mapper的最终输出结果

     (4)reduce处理,处理后将新的<key,value>对输出。
相关文章
相关标签/搜索