关于对称加密与非对称加密的概念这里再也不多说,感兴趣能够看下我以前的几篇文章,下面说一说二者的主要区别。java
对称加密算法数据安全,密钥管理复杂,密钥传递过程复杂,存在密钥泄露问题。算法
非对称加密算法强度复杂、安全性依赖于算法与密钥。可是因为算法复杂,使得非对称算法加解密速度没有对称算法加解密的速度快。安全
对称密钥体制中只有一种密钥,而且是非公开的。若是要解密就得让对方知道密钥。因此保证其安全性就是保证密钥的安全。网络
非对称密钥体制有两种密钥,其中一个是公开的,这样就能够不须要像对称密码那样向对方传输密钥了。所以安全性就大了不少。dom
对称加密 | 非对称加密 | |
---|---|---|
算法复杂度 | 弱 | 强 |
加解密速度 | 快 | 慢 |
安全性 | 低 | 高 |
常见算法 | DES、3DES、Blowfish、IDEA、RC四、RC五、RC六、AES | RSA、DSA、ECC、Diffie-Hellman、El Gamal |
Diffie-Hellman算法(D-H算法),密钥一致协议。是由公开密钥密码体制的奠定人Diffie和Hellman所提出的一种思想。简单的说就是容许两名用户在公开媒体上交换信息以生成"一致"的、能够共享的密钥。换句话说,就是由甲方产出一对密钥(公钥、私钥),乙方依照甲方公钥产生乙方密钥对(公钥、私钥)。以此为基线,做为数据传输保密基础,同时双方使用同一种对称加密算法构建本地密钥(SecretKey)对数据加密。这样,在互通了本地密钥(SecretKey)算法后,甲乙双方公开本身的公钥,使用对方的公钥和刚才产生的私钥加密数据,同时能够使用对方的公钥和本身的私钥对数据解密。不仅仅是甲乙双方两方,能够扩展为多方共享数据通信,这样就完成了网络交互数据的安全通信!该算法源于中国的同余定理——中国馀数定理。ide
流程分析:编码
1.甲方构建密钥对儿,将公钥公布给乙方,将私钥保留;双方约定数据加密算法;乙方经过甲方公钥构建密钥对儿,将公钥公布给甲方,将私钥保留。加密
2.甲方使用私钥、乙方公钥、约定数据加密算法构建本地密钥,而后经过本地密钥加密数据,发送给乙方加密后的数据;乙方使用私钥、甲方公钥、约定数据加密算法构建本地密钥,而后经过本地密钥对数据解密。code
3.乙方使用私钥、甲方公钥、约定数据加密算法构建本地密钥,而后经过本地密钥加密数据,发送给甲方加密后的数据;甲方使用私钥、乙方公钥、约定数据加密算法构建本地密钥,而后经过本地密钥对数据解密。xml
Java代码:
import javax.crypto.Cipher; import javax.crypto.KeyAgreement; import javax.crypto.SecretKey; import javax.crypto.interfaces.DHPublicKey; import javax.crypto.spec.DHParameterSpec; import java.security.*; import java.security.spec.X509EncodedKeySpec; import java.util.Base64; import java.util.Objects; public class DH { private static final String src = "dh test"; public static void main(String[] args) { jdkDH(); } // jdk实现: public static void jdkDH() { try { // 1.发送方初始化密钥,将公钥给接收方 KeyPairGenerator senderKeyPairGenerator = KeyPairGenerator.getInstance("DH"); senderKeyPairGenerator.initialize(512); KeyPair senderKeyPair = senderKeyPairGenerator.generateKeyPair(); // 发送方公钥,发送给接收方(经过网络或文件的形式) PublicKey senderPublicKey = senderKeyPair.getPublic(); // 公钥 PrivateKey senderPrivateKey = senderKeyPair.getPrivate(); // 私钥 // 接收方还原发送方公钥 KeyFactory receiverKeyFactory = KeyFactory.getInstance("DH"); X509EncodedKeySpec x509EncodedKeySpec = new X509EncodedKeySpec(senderPublicKey.getEncoded()); senderPublicKey = receiverKeyFactory.generatePublic(x509EncodedKeySpec); // 2.接收方经过发送方的公钥构建密钥,将公钥给发送方 DHParameterSpec dhParameterSpec = ((DHPublicKey) senderPublicKey).getParams(); KeyPairGenerator receiverKeyPairGenerator = KeyPairGenerator.getInstance("DH"); receiverKeyPairGenerator.initialize(dhParameterSpec); KeyPair receiverKeypair = receiverKeyPairGenerator.generateKeyPair(); PrivateKey receiverPrivateKey = receiverKeypair.getPrivate(); // 私钥 PublicKey receiverPublicKey = receiverKeypair.getPublic(); // 公钥 // 3.接收方使用本身的私钥和发送方的公钥构建本地密钥 KeyAgreement receiverKeyAgreement = KeyAgreement.getInstance("DH"); receiverKeyAgreement.init(receiverPrivateKey); receiverKeyAgreement.doPhase(senderPublicKey, true); SecretKey receiverDesKey = receiverKeyAgreement.generateSecret("DES"); // 发送方还原接收方公钥 KeyFactory senderKeyFactory = KeyFactory.getInstance("DH"); x509EncodedKeySpec = new X509EncodedKeySpec(receiverPublicKey.getEncoded()); receiverPublicKey = senderKeyFactory.generatePublic(x509EncodedKeySpec); // 4.发送方使用本身的私钥和接收方的公钥构建本地密钥 KeyAgreement senderKeyAgreement = KeyAgreement.getInstance("DH"); senderKeyAgreement.init(senderPrivateKey); senderKeyAgreement.doPhase(receiverPublicKey, true); SecretKey senderDesKey = senderKeyAgreement.generateSecret("DES"); if (Objects.equals(receiverDesKey, senderDesKey)) { System.out.println("双方密钥相同"); } // 5.发送方使用本地密钥加密 Cipher cipher = Cipher.getInstance("DES"); cipher.init(Cipher.ENCRYPT_MODE, senderDesKey); byte[] result = cipher.doFinal(src.getBytes()); System.out.println("bc dh encrypt:" + Base64.getEncoder().encodeToString(result)); // 6.接收方使用本地密钥解密 cipher.init(Cipher.DECRYPT_MODE, receiverDesKey); result = cipher.doFinal(result); System.out.println("bc dh decrypt:" + new String(result)); } catch (Exception e) { e.printStackTrace(); } } }
注意:由于JDK的版本问题,若是遇到异常java.security.NoSuchAlgorithmException: Unsupported secret key algorithm: DES
,能够在运行的时候追加JVM参数-Djdk.crypto.KeyAgreement.legacyKDF=true
RSA是目前最有影响力的公钥加密算法,它可以抵抗到目前为止已知的绝大多数密码攻击,已被ISO推荐为公钥数据加密标准。
RSA算法支持公钥加密、私钥解密以及私钥加密、公钥解密。既能够用于加密也可用于数字签名。
关于更多RSA算法的实现原理等,本文再也不涉及。
Java代码:
import javax.crypto.Cipher; import java.security.*; import java.security.interfaces.RSAPrivateKey; import java.security.interfaces.RSAPublicKey; import java.security.spec.PKCS8EncodedKeySpec; import java.security.spec.X509EncodedKeySpec; import java.util.Base64; public class RSA { public static final String src = "rsa test"; public static void main(String[] args) { jdkRSA(); } // jdk实现: public static void jdkRSA() { try { // 1.生成公钥和私钥 KeyPairGenerator keyPairGenerator = KeyPairGenerator.getInstance("RSA"); keyPairGenerator.initialize(512); KeyPair keyPair = keyPairGenerator.generateKeyPair(); RSAPublicKey rsaPublicKey = (RSAPublicKey) keyPair.getPublic(); RSAPrivateKey rsaPrivateKey = (RSAPrivateKey) keyPair.getPrivate(); System.out.println("Public Key:" + Base64.getEncoder().encodeToString(rsaPublicKey.getEncoded())); System.out.println("Private Key:" + Base64.getEncoder().encodeToString(rsaPrivateKey.getEncoded())); // 2.私钥加密、公钥解密 ---- 加密 //PKCS8EncodedKeySpec类表示私钥的ASN.1编码。 PKCS8EncodedKeySpec pkcs8EncodedKeySpec = new PKCS8EncodedKeySpec(rsaPrivateKey.getEncoded()); KeyFactory keyFactory = KeyFactory.getInstance("RSA"); PrivateKey privateKey = keyFactory.generatePrivate(pkcs8EncodedKeySpec); Cipher cipher = Cipher.getInstance("RSA"); cipher.init(Cipher.ENCRYPT_MODE, privateKey); byte[] result = cipher.doFinal(src.getBytes()); System.out.println("私钥加密、公钥解密 ---- 加密:" + Base64.getEncoder().encodeToString(result)); // 3.私钥加密、公钥解密 ---- 解密 //X509EncodedKeySpec类表示根据ASN.1类型SubjectPublicKeyInfo编码的公钥的ASN.1编码。 X509EncodedKeySpec x509EncodedKeySpec = new X509EncodedKeySpec(rsaPublicKey.getEncoded()); keyFactory = KeyFactory.getInstance("RSA"); PublicKey publicKey = keyFactory.generatePublic(x509EncodedKeySpec); cipher = Cipher.getInstance("RSA"); cipher.init(Cipher.DECRYPT_MODE, publicKey); result = cipher.doFinal(result); System.out.println("私钥加密、公钥解密 ---- 解密:" + new String(result)); // 4.公钥加密、私钥解密 ---- 加密 //X509EncodedKeySpec类表示根据ASN.1类型SubjectPublicKeyInfo编码的公钥的ASN.1编码。 X509EncodedKeySpec x509EncodedKeySpec2 = new X509EncodedKeySpec(rsaPublicKey.getEncoded()); KeyFactory keyFactory2 = KeyFactory.getInstance("RSA"); PublicKey publicKey2 = keyFactory2.generatePublic(x509EncodedKeySpec2); Cipher cipher2 = Cipher.getInstance("RSA"); cipher2.init(Cipher.ENCRYPT_MODE, publicKey2); byte[] result2 = cipher2.doFinal(src.getBytes()); System.out.println("公钥加密、私钥解密 ---- 加密:" + Base64.getEncoder().encodeToString(result2)); // 5.私钥解密、公钥加密 ---- 解密 //PKCS8EncodedKeySpec类表示私钥的ASN.1编码。 PKCS8EncodedKeySpec pkcs8EncodedKeySpec5 = new PKCS8EncodedKeySpec(rsaPrivateKey.getEncoded()); KeyFactory keyFactory5 = KeyFactory.getInstance("RSA"); PrivateKey privateKey5 = keyFactory5.generatePrivate(pkcs8EncodedKeySpec5); Cipher cipher5 = Cipher.getInstance("RSA"); cipher5.init(Cipher.DECRYPT_MODE, privateKey5); byte[] result5 = cipher5.doFinal(result2); System.out.println("公钥加密、私钥解密 ---- 解密:" + new String(result5)); } catch (Exception e) { e.printStackTrace(); } } }
图解流程:
在密码学中,ElGamal加密算法是一个基于迪菲-赫尔曼密钥交换的非对称加密算法。它在1985年由塔希尔·盖莫尔提出。GnuPG和PGP等不少密码学系统中都应用到了ElGamal算法。
ElGamal算法只提供了公钥加密,私钥解密形式,Jdk中没有实现,Bouncy Castle中对其进行了实现。
导入Bouncy Castle依赖:
<dependency> <groupId>org.bouncycastle</groupId> <artifactId>bcprov-jdk15</artifactId> <version>1.46</version> </dependency>
Java代码:
import org.bouncycastle.jce.provider.BouncyCastleProvider; import javax.crypto.Cipher; import javax.crypto.spec.DHParameterSpec; import java.security.*; import java.security.spec.PKCS8EncodedKeySpec; import java.security.spec.X509EncodedKeySpec; import java.util.Base64; public class ElGamal { //非对称密钥算法 public static final String EL_GAMAL = "ElGamal"; /** * 密钥长度,DH算法的默认密钥长度是1024 * 密钥长度必须是8的倍数,在160到16384位之间 */ private static final int KEY_SIZE = 256; public static void main(String[] args) throws Exception { System.out.println("=============接收方构建密钥对============="); // 加入对BouncyCastle支持 Security.addProvider(new BouncyCastleProvider()); AlgorithmParameterGenerator apg = AlgorithmParameterGenerator.getInstance(EL_GAMAL); //初始化参数生成器 apg.init(KEY_SIZE); //生成算法参数 AlgorithmParameters params = apg.generateParameters(); //构建参数材料 DHParameterSpec elParams = params.getParameterSpec(DHParameterSpec.class); //实例化密钥生成器 KeyPairGenerator kpg = KeyPairGenerator.getInstance(EL_GAMAL); //初始化密钥对生成器 kpg.initialize(elParams, new SecureRandom()); KeyPair keyPair = kpg.generateKeyPair(); //甲方公钥 PublicKey publicKey = keyPair.getPublic(); //甲方私钥 PrivateKey privateKey = keyPair.getPrivate(); System.out.println("公钥:" + Base64.getEncoder().encodeToString(publicKey.getEncoded())); System.out.println("私钥:" + Base64.getEncoder().encodeToString(privateKey.getEncoded())); System.out.println("=============密钥对构造完毕,接收方将公钥公布给发送方============="); String str = "ElGamal密码交换算法"; System.out.println("原文:" + str); System.out.println("=============发送方还原接收方公钥,并使用公钥对数据进行加密============="); //还原公钥 KeyFactory keyFactory = KeyFactory.getInstance(EL_GAMAL); X509EncodedKeySpec x509KeySpec = new X509EncodedKeySpec(publicKey.getEncoded()); publicKey = keyFactory.generatePublic(x509KeySpec); System.out.println("公钥:" + Base64.getEncoder().encodeToString(publicKey.getEncoded())); //数据加密 Cipher cipher = Cipher.getInstance(keyFactory.getAlgorithm()); cipher.init(Cipher.ENCRYPT_MODE, publicKey); byte[] bytes = cipher.doFinal(str.getBytes()); System.out.println("加密后的数据:" + Base64.getEncoder().encodeToString(bytes)); System.out.println("=============接收方使用私钥对数据进行解密==========="); //还原私钥 PKCS8EncodedKeySpec pkcs8KeySpec = new PKCS8EncodedKeySpec(privateKey.getEncoded()); keyFactory = KeyFactory.getInstance(EL_GAMAL); privateKey = keyFactory.generatePrivate(pkcs8KeySpec); //数据解密 cipher = Cipher.getInstance(keyFactory.getAlgorithm()); cipher.init(Cipher.DECRYPT_MODE, privateKey); byte[] bytes1 = cipher.doFinal(bytes); System.out.println("解密后的数据:" + new String(bytes1)); } }
图解流程: