盼望着,盼望着,《复联3》终于在国内上映。《复仇者联盟:无限战争》的表现也不负众望,国内上映3天后票房即达12亿元,目前豆瓣评分为8.5。git
不用说你也知道,“复仇者联盟”里每一个成员都性格迥异,因此说话用词都有各自鲜明的特色。那他们说话都爱用哪些词儿?windows
国外有几位漫威的铁杆粉丝把每一个复仇者的说话习惯用 R 语言可视化了出来,图中每一个词对应的条形长度,表明了他比其余复仇者更爱说这个词的程度。api
咱们能够看到,美队老爱喊别人名字,特别是托尼(emmmmmm...);黑豹常常念叨一些很高大上的词(好比朋友,国王),不像蜘蛛侠,满嘴嗯啊个不停(好比嘿,啊,呃),还跟个孩子似的;浩克和鹰眼说的最多的是黑寡妇,不过两人喊得称呼却不一样(缘由你猜);幻视和绯红女巫颇有共同话题,因此这是俩人互生爱慕的缘由?果真,雷神念叨最多的仍是老弟洛基,并且总是想着“宇宙大事”,说的话都和第三部《无限战争》紧密相关;至于洛基嘛,意料之中的常常哔哔“权力”“王位”这些,可是跟洛基同样也渴望权力的奥创却说话不同,人家说的词就颇有诗意。bash
这么有意思的可视化图形是怎么作出来的呢?秘笈以下:app
首先咱们会用到如下 R 语言包:ide
library(dplyr)
library(grid)
library(gridExtra)
library(ggplot2)
library(reshape2)
library(cowplot)
library(jpeg)
library(extrafont)
复制代码
有些人可能认为使用“清除全部”代码行很很差,可是在脚本顶部用它能够确保在执行脚本时,脚本不会依赖不当心遗留在工做区内的任何对象。函数
rm(list = ls())
复制代码
这是包含全部复仇者图像的文件夹:字体
dir_images <- "C:\\Users\\Matt\\Documents\\R\\Avengers"
setwd(dir_images)
复制代码
设置字体ui
windowsFonts(Franklin=windowsFont("Franklin Gothic Demi"))
复制代码
character_names <- c("black_panther","black_widow","bucky","captain_america",
"falcon","hawkeye","hulk","iron_man",
"loki","nick_fury","rhodey","scarlet_witch",
"spiderman","thor","ultron","vision")
image_filenames <- paste0(character_names, ".jpg")
复制代码
读取和简化版复仇者名字对应的图像文件的函数this
read_image <- function(filename){
char_name <- gsub(pattern = "\\.jpg$", "", filename)
img <- jpeg::readJPEG(filename)
return(img)
}
复制代码
将全部图像读取为一个列表
all_images <- lapply(image_filenames, read_image)
复制代码
为这列图像分配名字,这样后面就能够被字符检索到了
names(all_images) <- character_names
复制代码
其实使用图像名字很简单,好比下面这个例子
# clear the plot window
grid.newpage()
# draw to the plot window
grid.draw(rasterGrob(all_images[['vision']]))
复制代码
获取文本数据 这几位漫威粉并无将他们本身的电影台词数据集分享出来,不过咱们能够在 IMSDB 上下载,而后用文本分析技术稍做处理。若是原做者后面将本身的数据集公开,咱们会第一时间分享。
加载本地数据集。
修正人物名字的大小写
capitalize <- Vectorize(function(string){
substr(string,1,1) <- toupper(substr(string,1,1))
return(string)
})
proper_noun_list <- c("clint","hydra","steve","tony",
"sam","stark","strucker","nat","natasha",
"hulk","tesseract", "vision",
"loki","avengers","rogers", "cap", "hill")
# Run the capitalization function
word_data <- word_data %>%
mutate(word = ifelse(word %in% proper_noun_list, capitalize(word), word)) %>%
mutate(word = ifelse(word == "jarvis", "JARVIS", word))
复制代码
注意前面的简化版人物名字,不要匹配文本数据框中已经处理好格式的人物名字。
unique(word_data$Speaker)
## [1] "Black Panther" "Black Widow" "Bucky"
## [4] "Captain America" "Falcon" "Hawkeye"
## [7] "Hulk" "Iron Man" "Loki"
## [10] "Nick Fury" "Rhodey" "Scarlet Witch"
## [13] "Spiderman" "Thor" "Ultron"
## [16] "Vision"
复制代码
制做一个查询表,将简写的文件名转换为美观的人物名字
character_labeler <- c(`black_panther` = "Black Panther",
`black_widow` = "Black Widow",
`bucky` = "Bucky",
`captain_america` = "Captain America",
`falcon` = "Falcon", `hawkeye` = "Hawkeye",
`hulk` = "Hulk", `iron_man` = "Iron Man",
`loki` = "Loki", `nick_fury` = "Nick Fury",
`rhodey` = "Rhodey",`scarlet_witch` ="Scarlet Witch",
`spiderman`="Spiderman", `thor`="Thor",
`ultron` ="Ultron", `vision` ="Vision")
复制代码
得到两个不一样版本的人物名字
其中一个版本用来展现(由于美观),另外一个版本用于简单的组织和引用图像文件(由于简单)。
convert_pretty_to_simple <- Vectorize(function(pretty_name){
# pretty_name = "Vision"
simple_name <- names(character_labeler)[character_labeler==pretty_name]
# simple_name <- as.vector(simple_name)
return(simple_name)
})
# convert_pretty_to_simple(c("Vision","Thor"))
# just for fun, the inverse of that function
convert_simple_to_pretty <- function(simple_name){
# simple_name = "vision"
pretty_name <- character_labeler[simple_name] %>% as.vector()
return(pretty_name)
}
# example
convert_simple_to_pretty(c("vision","black_panther"))
## [1] "Vision" "Black Panther"
复制代码
为文本数据框添加简化版人物名字。
word_data$character <- convert_pretty_to_simple(word_data$Speaker)
复制代码
为每一个人物分配一个主要颜色。
character_palette <- c(`black_panther` = "#51473E",
`black_widow` = "#89B9CD",
`bucky` = "#6F7279",
`captain_america` = "#475D6A",
`falcon` = "#863C43", `hawkeye` = "#84707F",
`hulk` = "#5F5F3F", `iron_man` = "#9C2728",
`loki` = "#3D5C25", `nick_fury` = "#838E86",
`rhodey` = "#38454E",`scarlet_witch` ="#620E1B",
`spiderman`="#A23A37", `thor`="#323D41",
`ultron` ="#64727D", `vision` ="#81414F" )
复制代码
制做水平方向的条形图
avengers_bar_plot <- word_data %>%
group_by(Speaker) %>%
top_n(5, amount) %>%
ungroup() %>%
mutate(word = reorder(word, amount)) %>%
ggplot(aes(x = word, y = amount, fill = character))+
geom_bar(stat = "identity", show.legend = FALSE)+
scale_fill_manual(values = character_palette)+
scale_y_continuous(name ="Log Odds of Word",
breaks = c(0,1,2)) +
theme(text = element_text(family = "Franklin"),
# axis.title.x = element_text(size = rel(1.5)),
panel.grid = element_line(colour = NULL),
panel.grid.major.y = element_blank(),
panel.grid.minor = element_blank(),
panel.background = element_rect(fill = "white",
colour = "white"))+
# theme(strip.text.x = element_text(size = rel(1.5)))+
xlab("")+
coord_flip()+
facet_wrap(~Speaker, scales = "free_y")
avengers_bar_plot
复制代码
看起来很不错。
可是咱们想画个更酷炫的图:用每一个复仇者的照片来填充条形图。
也就是说咱们只在条形图区域内展现出复仇者的照片,在条形区域之外的地方则不展现(以下图所示)。
若是想作到这点,咱们须要显示一个透明的条形,而后在条形的末尾画一个白色的条形,延伸至图像边缘覆盖人物照片的剩余部分。
在数据框部分,咱们如今想用所需的值的余数来补充数字值,以实现总体最大化,这样当把值和余数相加时,全部数值都会增长到同一最大数值,以一样的格式将不一样行组合到一块儿。
max_amount <- max(word_data$amount)
word_data$remainder <- (max_amount - word_data$amount) + 0.2
复制代码
只提取每一个复仇者说的最多的5个词
word_data_top5 <- word_data %>%
group_by(character) %>%
arrange(desc(amount)) %>%
slice(1:5) %>%
ungroup()
复制代码
将数量&余数转换为长格式
这样能保证每一个人物和所说词语的匹配关系有两个 entry,一个用以真实数量(“amount”),一个用以选择在哪里结束,达到常见的最大值(“remainder”)。
这会将“amount”和“remainder”重叠为一个单独的列称为“variable”,表示是什么值,而另外一个列“value”包含来自这些值中每个值的数字。
word_data_top5_m <- melt(word_data_top5, measure.vars = c("amount","remainder"))
复制代码
Variable 是一个值是真实数量仍是补充数量的标记。
如今咱们按顺序将它们放在一块儿,和在melt函数中的肯定它们的顺序相反。不然“amount”和“remainder”会以相反的顺序展示在图形中。
word_data_top5_m$variable2 <- factor(word_data_top5_m$variable,
levels = rev(levels(word_data_top5_m$variable)))
复制代码
以简单的形式声明人物名字,好比用 black_panther 而不是 Black Panther。
plot_char <- function(character_name){
# example: character_name = "black_panther"
# plot details that we might want to fiddle with
# thickness of lines between bars
bar_outline_size <- 0.5
# transparency of lines between bars
bar_outline_alpha <- 0.25
#
# The function takes the simple character name,
# but here, we convert it to the pretty name,
# because we'll want to use that on the plot.
pretty_character_name <- convert_simple_to_pretty(character_name)
# Get the image for this character,
# from the list of all images.
temp_image <- all_images[character_name]
# Make a data frame for only this character
temp_data <- word_data_top5_m %>%
dplyr::filter(character == character_name) %>%
mutate(character = character_name)
# order the words by frequency
# First, make an ordered vector of the most common words
# for this character
ordered_words <- temp_data %>%
mutate(word = as.character(word)) %>%
dplyr::filter(variable == "amount") %>%
arrange(value) %>%
`[[`(., "word")
# order the words in a factor,
# so that they plot in this order,
# rather than alphabetical order
temp_data$word = factor(temp_data$word, levels = ordered_words)
# Get the max value,
# so that the image scales out to the end of the longest bar
max_value <- max(temp_data$value)
fill_colors <- c(`remainder` = "white", `value` = "white")
# Make a grid object out of the character's image
character_image <- rasterGrob(all_images[[character_name]],
width = unit(1,"npc"),
height = unit(1,"npc"))
# make the plot for this character
output_plot <- ggplot(temp_data)+
aes(x = word, y = value, fill = variable2)+
# add image
# draw it completely bottom to top (x),
# and completely from left to the the maximum log-odds value (y)
# note that x and y are flipped here,
# in prep for the coord_flip()
annotation_custom(character_image,
xmin = -Inf, xmax = Inf, ymin = 0, ymax = max_value) +
geom_bar(stat = "identity", color = alpha("white", bar_outline_alpha),
size = bar_outline_size, width = 1)+
scale_fill_manual(values = fill_colors)+
theme_classic()+
coord_flip(expand = FALSE)+
# use a facet strip,
# to serve as a title, but with color
facet_grid(. ~ character, labeller = labeller(character = character_labeler))+
# figure out color swatch for the facet strip fill
# using character name to index the color palette
# color= NA means there's no outline color.
theme(strip.background = element_rect(fill = character_palette[character_name],
color = NA))+
# other theme elements
theme(strip.text.x = element_text(size = rel(1.15), color = "white"),
text = element_text(family = "Franklin"),
legend.position = "none",
panel.grid = element_blank(),
axis.text.x = element_text(size = rel(0.8)))+
# omit the axis title for the individual plot,
# because we'll have one for the entire ensemble
theme(axis.title = element_blank())
return(output_plot)
}
复制代码
plot_x_axis_text <- paste("Tendency to use this word more than other characters do",
"(units of log odds ratio)", sep = "\n")
复制代码
下面是函数在这里的工做示例
sample_plot <- plot_char("black_panther")+
theme(axis.title = element_text())+
# x lab is still declared as y lab
# because of coord_flip()
ylab(plot_x_axis_text)
sample_plot
复制代码
由于随着数字增大,差别也会随之增大(具体数学知识这里再也不讲述);将它们转换为对数尺度,能够约束变化幅度的大小,方便咱们在屏幕上展现。
若是想将这些对数差别转化为简单的几率形式,能够用以下函数:
logit2prob <- function(logit){
odds <- exp(logit)
prob <- odds / (1 + odds)
return(prob)
}
复制代码
这样处理后水平轴会以下所示:
logit2prob(seq(0, 2.5, 0.5))
## [1] 0.5000000 0.6224593 0.7310586 0.8175745 0.8807971 0.9241418
复制代码
注意此序列中连续项目之间的差别在慢慢消失:
diff(logit2prob(seq(0, 2.5, 0.5)))
## [1] 0.12245933 0.10859925 0.08651590 0.06322260 0.04334474
复制代码
Okay,如今咱们制做出了一个图···
咱们接着将函数应用到列表中全部复仇者身上,将全部绘图放入一个列表对象。
all_plots <- lapply(character_names, plot_char)
复制代码
不只仅是文本,还有其它画出的信息。
你能够选择提取 X 轴名称仍是 Y 轴名称:
get_axis_grob <- function(plot_to_pick, which_axis){
# plot_to_pick <- sample_plot
tmp <- ggplot_gtable(ggplot_build(plot_to_pick))
# tmp$grobs
# find the grob that looks like
# it would be the x axis
axis_x_index <- which(sapply(tmp$grobs, function(x){
# for all the grobs,
# return the index of the one
# where you can find the text
# "axis.title.x" or "axis.title.y"
# based on input argument `which_axis`
grepl(paste0("axis.title.",which_axis), x)}
))
axis_grob <- tmp$grobs[[axis_x_index]]
return(axis_grob)
}
复制代码
px_axis_x <- get_axis_grob(sample_plot, "x")
px_axis_y <- get_axis_grob(sample_plot, "y")
复制代码
下面是使用这些提取的轴的方法:
grid.newpage()
grid.draw(px_axis_x)
复制代码
将全部绘图排成一个对象
big_plot <- arrangeGrob(grobs = all_plots)
复制代码
将 X 轴嵌入绘图的底部,由于每一个图并无 X 轴,而咱们想让它们都有 X 轴。
注意这时绘图会看着很不协调,高度差很少是宽度的十倍。
big_plot_w_x_axis_title <- arrangeGrob(big_plot,
px_axis_x,
heights = c(10,1))
grid.newpage()
grid.draw(big_plot_w_x_axis_title)
复制代码
绘图所占的空间大小不一,由于每一个图的词汇长度不一样。
这样看起来有些混乱。
一般咱们会用 facet_grid() 或 facet_wrap() 来确保绘图整洁有序,但这里却不能使用由于每一个图的背景图各不相同,没法像数据框中的其它列同样映射到平面上(由于背景图像实际上并不是数据框的一部分)。
这样绘图的轴会垂直对齐:
big_plot_aligned <- cowplot::plot_grid(plotlist = all_plots, align = 'v', nrow = 4)
复制代码
和以前同样,将X轴名称添加至绘图对齐后网格的下方。
big_plot_w_x_axis_title_aligned <- arrangeGrob(big_plot_aligned,
px_axis_x,
heights = c(10,1))
复制代码
下面是将总体效果图绘制在屏幕上的方法:
grid.newpage()
grid.draw(big_plot_w_x_axis_title_aligned)
复制代码
很好!
保存最终图像:
ggsave(big_plot_w_x_axis_title_aligned,
file = "Avengers_Word_Usage.png",
width = 12, height = 6.3)
复制代码
这样,咱们就可视化出了《复联》中各个复仇者都最爱说那些话!