深度学习中学习率和batchsize对模型准确率的影响

本内容来自其他的人解析,参考链接在最后的注释。 1. 前言 目前深度学习模型多采用批量随机梯度下降算法进行优化,随机梯度下降算法的原理如下: n是批量大小(batchsize),η是学习率(learning rate)。可知道除了梯度本身,这两个因子直接决定了模型的权重更新,从优化本身来看它们是影响模型性能收敛最重要的参数。 学习率直接影响模型的收敛状态,batchsize则影响模型的泛化性能,两
相关文章
相关标签/搜索