You are given a list of non-negative integers, a1, a2, ..., an, and a target, S. Now you have 2 symbols + and -. For each integer, you should choose one from + and - as its new symbol.c++
Find out how many ways to assign symbols to make sum of integers equal to target S.git
Example 1:
Input: nums is [1, 1, 1, 1, 1], S is 3.
Output: 5
Explanation:code
-1+1+1+1+1 = 3
+1-1+1+1+1 = 3
+1+1-1+1+1 = 3
+1+1+1-1+1 = 3
+1+1+1+1-1 = 3element
There are 5 ways to assign symbols to make the sum of nums be target 3.
Note:
The length of the given array is positive and will not exceed 20.
The sum of elements in the given array will not exceed 1000.
Your output answer is guaranteed to be fitted in a 32-bit integer.get
这道题至关于找一个子集求和减去剩下的集合求和等于目标值。P表示positive, N表示Negitive
// sum(P) - sum(N) = S
// sum(P) + sum(N) + sum(P) - sum(N) = S + sum(All)
// 2sum(P) = sum(All) + S
// sum(P) = (sum(All) + S) / 2it
解题思想:动态规划。dp[j] = dp[j] + dp[j - n]io
class Solution { public: int findTargetSumWays(vector<int>& nums, int S) { // sum(P) - sum(N) = S // sum(P) + sum(N) + sum(P) - sum(N) = S + sum(All) // 2sum(P) = sum(All) + S // sum(P) = (sum(All) + S) / 2 int sum = 0; for (int n : nums) sum += n; if ((sum + S) & 1 == 1 || sum < S) return 0; sum = (sum + S) / 2; return subsetsum(nums, sum); } int subsetsum(vector<int>& nums, int sum) { int dp[sum + 1] = {0}; dp[0] = 1; for (int n : nums) { for (int j = sum; j >= n; j--) dp[j] += dp[j - n]; } return dp[sum]; } };