depthwise separable convolution,深度可变卷积

深度可变卷积把传统的卷积过程分成两步:depthwise convolution和pointwise convolution。 depthwise convolution:过滤器的层数等于输入通道数,输出的featuremap的层数也就等于输入的通道数。 pointwise convolution:类似常规卷积操作,filter尺寸是1×1×M×N。M是上层输入通道数,输出featuremap数是
相关文章
相关标签/搜索