DeepMind论文解读:让机器更深入地理解文本

论文导读 相比于信息抽取,阅读理解任务要求机器能够整合篇幅较长的上下文信息(如整篇文章)并能够对事件进行推理。但是现阶段的阅读理解任务仍然能够以一种投机取巧的方法,利用浅层的语言形态学信息(如问答对之间的文本相似性以及整个文章内的统计词频)从问题中直接找到关于答案的蛛丝马迹。 因此文中提出了一个新的阅读理解数据集,旨在迫使机器必须通篇阅读书籍或者电影脚本(远远长于一篇文章)才能回答问题。该数据集更
相关文章
相关标签/搜索