import vincent
world_countries = r'world-countries.json'world = vincent.Map(width=1200, height=1000)
world.geo_data(projection='winkel3', scale=200, world=world_countries)
world.to_json(path)python
当我开始建造Vincent时, 个人一个目的就是使得地图的建造尽量合理化. 有一些很棒的python地图库-参见Basemap 和 Kartograph能让地图更有意思. 我强烈推荐这两个工具, 由于他们都很好用并且很强大. 我想有更简单一些的工具,能依靠Vega的力量而且容许简单的语法点到geoJSON文件,详细描述一个投影和大小/比列,最后输出地图.json
例如, 将地图数据分层来创建更复杂的地图:框架
vis = vincent.Map(width=1000, height=800)#Add the US county data and a new line colorvis.geo_data(projection='albersUsa', scale=1000, counties=county_geo)
vis + ('2B4ECF', 'marks', 0, 'properties', 'enter', 'stroke', 'value')#Add the state data, remove the fill, write Vega spec output to JSONvis.geo_data(states=state_geo)
vis - ('fill', 'marks', 1, 'properties', 'enter')
vis.to_json(path)工具
加之,等值线地图需绑定Pandas数据,须要数据列直接映射到地图要素.假设有一个从geoJSON到列数据的1:1映射,它的语法是很是简单的:3d
#'merged' is the Pandas DataFramevis = vincent.Map(width=1000, height=800)
vis.tabular_data(merged, columns=['FIPS_Code', 'Unemployment_rate_2011'])
vis.geo_data(projection='albersUsa', scale=1000, bind_data='data.id', counties=county_geo)
vis + (["#f5f5f5","#000045"], 'scales', 0, 'range')rest
咱们的数据并不是没有争议无需改造——用户须要确保 geoJSON 键与熊猫数据框架之间具备1:1的映射。下面就是以前实例所需的简明的数据框架映射:咱们的国家信息是一个列有FIPS 码、国家名称、以及经济信息(列名省略)的 CSV 文件:code
00000,US,United States,154505871,140674478,13831393,9,50502,10001000,AL,Alabama,2190519,1993977,196542,9,41427,10001001,AL,Autauga County,25930,23854,2076,8,48863,117.901003,AL,Baldwin County,85407,78491,6916,8.1,50144,12101005,AL,Barbour County,9761,8651,1110,11.4,30117,72.7orm
在 geoJSON 中,咱们的国家形状是以 FIPS 码为id 的(感谢 fork 自 Trifacta 的相关信息)。为了简便,实际形状已经作了简略,在示例数据能够找到完整的数据集:blog
{"type":"FeatureCollection","features":[
{"type":"Feature","id":"1001","properties":{"name":"Autauga"}
{"type":"Feature","id":"1003","properties":{"name":"Baldwin"}
{"type":"Feature","id":"1005","properties":{"name":"Barbour"}
{"type":"Feature","id":"1007","properties":{"name":"Bibb"}
{"type":"Feature","id":"1009","properties":{"name":"Blount"}
{"type":"Feature","id":"1011","properties":{"name":"Bullock"}
{"type":"Feature","id":"1013","properties":{"name":"Butler"}
{"type":"Feature","id":"1015","properties":{"name":"Calhoun"}
{"type":"Feature","id":"1017","properties":{"name":"Chambers"}
{"type":"Feature","id":"1019","properties":{"name":"Cherokee"}rem
咱们须要匹配 FIPS 码,确保匹配正确,不然 Vega 没法正确的压缩数据:
import jsonimport pandas as pd#Map the county codes we have in our geometry to those in the#county_data file, which contains additional rows we don't needwith open(county_geo, 'r') as f:
get_id = json.load(f)#Grab the FIPS codes and load them into a dataframecounty_codes = [x['id'] for x in get_id['features']]
county_df = pd.DataFrame({'FIPS_Code': county_codes}, dtype=str)#Read into Dataframe, cast to string for consistencydf = pd.read_csv(county_data, na_values=[' '])
df['FIPS_Code'] = df['FIPS_Code'].astype(str)#Perform an inner join, pad NA's with data from nearest countymerged = pd.merge(df, county_df, on='FIPS_Code', how='inner')
merged = merged.fillna(method='pad')
>>>merged.head()
FIPS_Code State Area_name Civilian_labor_force_2011 Employed_2011 \ 0 1001 AL Autauga County 25930 23854
1 1003 AL Baldwin County 85407 78491
2 1005 AL Barbour County 9761 8651
3 1007 AL Bibb County 9216 8303
4 1009 AL Blount County 26347 24156
Unemployed_2011 Unemployment_rate_2011 Median_Household_Income_2011 \0 2076 8.0 48863 1 6916 8.1 50144 2 1110 11.4 30117 3 913 9.9 37347 4 2191 8.3 41940
Med_HH_Income_Percent_of_StateTotal_2011
0 117.9 1 121.0 2 72.7 3 90.2 4 101.2
如今,咱们能够快速生成不一样的等值线:
vis.tabular_data(merged, columns=['FIPS_Code', 'Civilian_labor_force_2011'])
这只能告诉咱们 LA 和 King 面积很是大,人口很是稠密。让咱们再看看中等家庭收入:
vis.tabular_data(merged, columns=['FIPS_Code', 'Median_Household_Income_2011'])
明显不少高收入区域在东海岸或是其余高密度区域。我敢打赌,在城市层级这将更加有趣,但这须要等之后发布的版本。让咱们快速重置地图,再看看国家失业率:
#Swap county data for state data, reset mapstate_data = pd.read_csv(state_unemployment)
vis.tabular_data(state_data, columns=['State', 'Unemployment'])
vis.geo_data(bind_data='data.id', reset=True, states=state_geo)
vis.update_map(scale=1000, projection='albersUsa')
vis + (['#c9cedb', '#0b0d11'], 'scales', 0, 'range')
地图便是个人激情所在——我但愿 Vincent 可以更强,包含轻松的添加点、标记及其它的能力。若是各位读者对于映射方面有什么功能上的需求,能够在Github上给我发问题。