栈帧(Stack Frame)是用于支持虚拟机进行方法调用和方法执行的数据结构,它是虚拟机运行时数据区中的虚拟机栈(Virtual Machine Stack)的栈元素。栈帧存储了方法的局部变量表、操做数栈、动态链接和方法返回地址等信息。每个方法从调用开始至执行完成的过程,都对应着一个栈帧在虚拟机栈里面从入栈到出栈的过程。每个栈帧都包括了局部变量表、操做数栈、动态链接、方法返回地址和一些额外的附加信息。在编译程序代码的时候,栈帧中须要多大的局部变量表,多深的操做数栈都已经彻底肯定了,而且写入到方法表的Code属性之中,所以一个栈帧须要分配多少内存,不会受到程序运行期变量数据的影响,而仅仅取决于具体的虚拟机实现。程序员
一个线程中的方法调用链可能会很长,不少方法都同时处于执行状态。对于执行引擎来讲,在活动线程中,只有位于栈顶的栈帧才是有效的,称为当前栈帧(Current Stack Frame),与这个栈帧相关联的方法称为当前方法(Current Method)。执行引擎运行的全部字节码指令都只针对当前栈帧进行操做,在概念模型上,典型的栈帧结构如图所示。数组
局部变量表(Local Variable Table)是一组变量值存储空间,用于存放方法参数和方法内部定义的局部变量。在Java程序编译为Class文件时,就在方法的Code属性的max_locals数据项中肯定了该方法所须要分配的局部变量表的最大容量。安全
局部变量表的容量以变量槽(Variable Slot,下称Slot)为最小单位,虚拟机规范中并无明确指明一个Slot应占用的内存空间大小,只是颇有导向性地说到每一个Slot都应该能存放一个boolean、byte、char、short、int、float、reference或returnAddress类型的数据,这8种数据类型,均可以使用32位或更小的物理内存来存放,但这种描述与明确指出“每一个Slot占用32位长度的内存空间”是有一些差异的,它容许Slot的长度能够随着处理器、操做系统或虚拟机的不一样而发生变化。只要保证即便在64位虚拟机中使用了64位的物理内存空间去实现一个Slot,虚拟机仍要使用对齐和补白的手段让Slot在外观上看起来与32位虚拟机中的一致。数据结构
一个Slot能够存放一个32位之内的数据类型,Java中占用32位之内的数据类型有boolean、byte、char、short、int、float、reference(Java虚拟机规范中没有明确规定reference类型的长度,它的长度与实际使用32仍是64位虚拟机有关,若是是64位虚拟机,还与是否开启某些对象指针压缩的优化有关)和returnAddress 8种类型。第7种reference类型表示对一个对象实例的引用,虚拟机规范既没有说明它的长度,也没有明确指出这种引用应有怎样的结构。但通常来讲,虚拟机实现至少都应当能经过这个引用作到两点,一是今后引用中直接或间接地查找到对象在Java堆中的数据存放的起始地址索引,二是此引用中直接或间接地查找到对象所属数据类型在方法区中的存储的类型信息,不然没法实现Java语言规范中定义的语法约束。并非全部语言的对象引用都能知足这两点,例如C++语言,默认状况下(不开启RTTI支持的状况),就只能知足第一点,而不知足第二点。这也是为什么C++中提供Java语言里很常见的反射的根本缘由。第8种即returnAddress类型目前已经不多见了,它是为字节码指令jsr、jsr_w和ret服务的,指向了一条字节码指令的地址,很古老的Java虚拟机曾经使用这几条指令来实现异常处理,如今已经由异常表代替。优化
对于64位的数据类型,虚拟机会以高位对齐的方式为其分配两个连续的Slot空间。Java语言中明确的(reference类型则多是32位也多是64位)64位的数据类型只有long和double两种。值得一提的是,这里把long和double数据类型分割存储的作法与“long和double的非原子性协定”中把一次long和double数据类型读写分割为两次32位读写的作法有些相似。不过,因为局部变量表创建在线程的堆栈上,是线程私有的数据,不管读写两个连续的Slot是否为原子操做,都不会引发数据安全问题。this
虚拟机经过索引定位的方式使用局部变量表,索引值的范围是从0开始至局部变量表最大的Slot数量。若是访问的是32位数据类型的变量,索引n就表明了使用第n个Slot,若是是64位数据类型的变量,则说明会同时使用n和n+1两个Slot。对于两个相邻的共同存放一个64位数据的两个Slot,不容许采用任何方式单独访问其中的某一个,Java虚拟机规范中明确要求了若是遇到进行这种操做的字节码序列,虚拟机应该在类加载的校验阶段抛出异常。spa
在方法执行时,虚拟机是使用局部变量表完成参数值到参数变量列表的传递过程的,若是执行的是实例方法(非static的方法),那局部变量表中第0位索引的Slot默认是用于传递方法所属对象实例的引用,在方法中能够经过关键字“this”来访问到这个隐含的参数。其他参数则按照参数表顺序排列,占用从1开始的局部变量Slot,参数表分配完毕后,再根据方法体内部定义的变量顺序和做用域分配其他的Slot。操作系统
为了尽量节省栈帧空间,局部变量表中的Slot是能够重用的,方法体中定义的变量,其做用域并不必定会覆盖整个方法体,若是当前字节码PC计数器的值已经超出了某个变量的做用域,那这个变量对应的Slot就能够交给其余变量使用。不过,这样的设计除了节省栈帧空间之外,还会伴随一些额外的反作用,例如,在某些状况下,Slot的复用会直接影响到系统的垃圾收集行为线程
public static void main(String[]args)(){ { byte[] placeholder=new byte[64*1024*1024]; } int a=0; System.gc(); } 运行一下程序,却发现此次内存真的被正确回收了。 [GC 66401K->65778K(125632K),0.0035471 secs] [Full GC 65778K->218K(125632K),0.0140596 secs]
placeholder可否被回收的根本缘由是:局部变量表中的Slot是否还存有关于placeholder数组对象的引用。代码虽然已经离开了placeholder的做用域,但在此以后,没有任何对局部变量表的读写操做(即没有int a=0这段代码),placeholder本来所占用的Slot尚未被其余变量所复用,因此做为GC Roots一部分的局部变量表仍然保持着对它的关联。这种关联没有被及时打断,在绝大部分状况下影响都很轻微。但若是遇到一个方法,其后面的代码有一些耗时很长的操做,而前面又定义了占用了大量内存、实际上已经不会再使用的变量,手动将其设置为null值(用来代替那句int a=0,把变量对应的局部变量表Slot清空)便不见得是一个绝对无心义的操做,这种操做能够做为一种在极特殊情形(对象占用内存大、此方法的栈帧长时间不能被回收、方法调用次数达不到JIT的编译条件)下的“奇技”来使用。设计
关于局部变量表,还有一点可能会对实际开发产生影响,就是局部变量不像前面介绍的类变量那样存在“准备阶段”。咱们已经知道类变量有两次赋初始值的过程,一次在准备阶段,赋予系统初始值;另一次在初始化阶段,赋予程序员定义的初始值。所以,即便在初始化阶段程序员没有为类变量赋值也没有关系,类变量仍然具备一个肯定的初始值。但局部变量就不同,若是一个局部变量定义了但没有赋初始值是不能使用的,不要认为Java中任何状况下都存在诸如整型变量默认为0,布尔型变量默认为false等这样的默认值。这段代码其实并不能运行,还好编译器能在编译期间就检查到并提示这一点,即使编译能经过或者手动生成字节码的方式制造出下面代码的效果,字节码校验的时候也会被虚拟机发现而致使类加载失败。
public static void main(String[]args){ int a; System.out.println(a); }
操做数栈(Operand Stack)也常称为操做栈,它是一个后入先出(Last In First Out,LIFO)栈。同局部变量表同样,操做数栈的最大深度也在编译的时候写入到Code属性的max_stacks数据项中。操做数栈的每个元素能够是任意的Java数据类型,包括long和double。32位数据类型所占的栈容量为1,64位数据类型所占的栈容量为2。在方法执行的任什么时候候,操做数栈的深度都不会超过在max_stacks数据项中设定的最大值。
当一个方法刚刚开始执行的时候,这个方法的操做数栈是空的,在方法的执行过程当中,会有各类字节码指令往操做数栈中写入和提取内容,也就是出栈/入栈操做。例如,在作算术运算的时候是经过操做数栈来进行的,又或者在调用其余方法的时候是经过操做数栈来进行参数传递的。举个例子,整数加法的字节码指令iadd在运行的时候操做数栈中最接近栈顶的两个元素已经存入了两个int型的数值,当执行这个指令时,会将这两个int值出栈并相加,而后将相加的结果入栈。
操做数栈中元素的数据类型必须与字节码指令的序列严格匹配,在编译程序代码的时候,编译器要严格保证这一点,在类校验阶段的数据流分析中还要再次验证这一点。再以上面的iadd指令为例,这个指令用于整型数加法,它在执行时,最接近栈顶的两个元素的数据类型必须为int型,不能出现一个long和一个float使用iadd命令相加的状况。另外,在概念模型中,两个栈帧做为虚拟机栈的元素,是彻底相互独立的。但在大多虚拟机的实现里都会作一些优化处理,令两个栈帧出现一部分重叠。让下面栈帧的部分操做数栈与上面栈帧的部分局部变量表重叠在一块儿,这样在进行方法调用时就能够共用一部分数据,无须进行额外的参数复制传递,Java虚拟机的解释执行引擎称为“基于栈的执行引擎”,其中所指的“栈”就是操做数栈。
每一个栈帧都包含一个指向运行时常量池中该栈帧所属方法的引用,持有这个引用是为了支持方法调用过程当中的动态链接(Dynamic Linking)。咱们知道Class文件的常量池中存有大量的符号引用,字节码中的方法调用指令就以常量池中指向方法的符号引用做为参数。这些符号引用一部分会在类加载阶段或者第一次使用的时候就转化为直接引用,这种转化称为静态解析。另一部分将在每一次运行期间转化为直接引用,这部分称为动态链接。(静态分派,动态分派)
当一个方法开始执行后,只有两种方式能够退出这个方法。第一种方式是执行引擎遇到任意一个方法返回的字节码指令,这时候可能会有返回值传递给上层的方法调用者(调用当前方法的方法称为调用者),是否有返回值和返回值的类型将根据遇到何种方法返回指令来决定,这种退出方法的方式称为正常完成出口(Normal Method Invocation Completion)。
另一种退出方式是,在方法执行过程当中遇到了异常,而且这个异常没有在方法体内获得处理,不管是Java虚拟机内部产生的异常,仍是代码中使用athrow字节码指令产生的异常,只要在本方法的异常表中没有搜索到匹配的异常处理器,就会致使方法退出,这种退出方法的方式称为异常完成出口(Abrupt Method Invocation Completion)。一个方法使用异常完成出口的方式退出,是不会给它的上层调用者产生任何返回值的。
不管采用何种退出方式,在方法退出以后,都须要返回到方法被调用的位置,程序才能继续执行,方法返回时可能须要在栈帧中保存一些信息,用来帮助恢复它的上层方法的执行状态。通常来讲,方法正常退出时,调用者的PC计数器的值能够做为返回地址,栈帧中极可能会保存这个计数器值。而方法异常退出时,返回地址是要经过异常处理器表来肯定的,栈帧中通常不会保存这部分信息。
方法退出的过程实际上就等同于把当前栈帧出栈,所以退出时可能执行的操做有:恢复上层方法的局部变量表和操做数栈,把返回值(若是有的话)压入调用者栈帧的操做数栈中,调整PC计数器的值以指向方法调用指令后面的一条指令等。
虚拟机规范容许具体的虚拟机实现增长一些规范里没有描述的信息到栈帧之中,例如与调试相关的信息,这部分信息彻底取决于具体的虚拟机实现。在实际开发中,通常会把动态链接、方法返回地址与其余附加信息所有归为一类,称为栈帧信息。