机器学习,详解SVM软间隔与对偶问题

今天是机器学习专题的第34篇文章,我们继续来聊聊SVM模型。 我们在上一篇文章当中推导了SVM模型在硬间隔的原理以及公式,最后我们消去了所有的变量,只剩下了 α \alpha α。在硬间隔模型当中,样本是线性可分的,也就是说-1和1的类别可以找到一个平面将它完美分开。但是在实际当中,这样的情况几乎是不存在的。道理也很简单,完美是不存在的,总有些样本会出错。 那针对这样的问题我们应该怎么解决呢? 软
相关文章
相关标签/搜索