JVM调优总结(2):基本垃圾回收算法

能够从不一样的的角度去划分垃圾回收算法: 算法

按照基本回收策略分

引用计数(Reference Counting): 多线程

比较古老的回收算法。原理是此对象有一个引用,即增长一个计数,删除一个引用则减小一个计数。垃圾回收时,只用收集计数为0的对象。此算法最致命的是没法处理循环引用的问题。 并发

标记-清除(Mark-Sweep): spa

此算法执行分两阶段。第一阶段从引用根节点开始标记全部被引用的对象,第二阶段遍历整个堆,把未标记的对象清除。此算法须要暂停整个应用,同时,会产生内存碎片。 线程

复制(Copying): 对象

此算法把内存空间划为两个相等的区域,每次只使用其中一个区域。垃圾回收时,遍历当前使用区域,把正在使用中的对象复制到另一个区域中。次算法每次只处理正在使用中的对象,所以复制成本比较小,同时复制过去之后还能进行相应的内存整理,不会出现“碎片”问题。固然,此算法的缺点也是很明显的,就是须要两倍内存空间。 生命周期

标记-整理(Mark-Compact): 内存

此算法结合了“标记-清除”和“复制”两个算法的优势。也是分两阶段,第一阶段从根节点开始标记全部被引用对象,第二阶段遍历整个堆,把清除未标记对象而且把存活对象“压缩”到堆的其中一块,按顺序排放。此算法避免了“标记-清除”的碎片问题,同时也避免了“复制”算法的空间问题。 rem

按分区对待的方式分

增量收集(Incremental Collecting):实时垃圾回收算法,即:在应用进行的同时进行垃圾回收。不知道什么缘由JDK5.0中的收集器没有使用这种算法的。 io

分代收集(Generational Collecting):基于对对象生命周期分析后得出的垃圾回收算法。把对象分为年青代、年老代、持久代,对不一样生命周期的对象使用不一样的算法(上述方式中的一个)进行回收。如今的垃圾回收器(从J2SE1.2开始)都是使用此算法的。

按系统线程分

串行收集:串行收集使用单线程处理全部垃圾回收工做,由于无需多线程交互,实现容易,并且效率比较高。可是,其局限性也比较明显,即没法使用多处理器的优点,因此此收集适合单处理器机器。固然,此收集器也能够用在小数据量(100M左右)状况下的多处理器机器上。

并行收集:并行收集使用多线程处理垃圾回收工做,于是速度快,效率高。并且理论上CPU数目越多,越能体现出并行收集器的优点。

并发收集:相对于串行收集和并行收集而言,前面两个在进行垃圾回收工做时,须要暂停整个运行环境,而只有垃圾回收程序在运行,所以,系统在垃圾回收时会有明显的暂停,并且暂停时间会由于堆越大而越长。

相关文章
相关标签/搜索