MappedByteBuffer VS FileChannel 孰强孰弱?

前言

Java 在 JDK 1.4 引入了 ByteBuffer 等 NIO 相关的类,使得 Java 程序员能够抛弃基于 Stream ,从而使用基于 Block 的方式读写文件,另外,JDK 还引入了 IO 性能优化之王—— 零拷贝 sendFile 和 mmap。但他们的性能究竟怎么样? 和 RandomAccessFile 比起来,快多少? 什么状况下快?究竟是 FileChannel 快仍是 MappedByteBuffer 快......linux

(零拷贝参考 Zero Copy I: User-Mode Perspective)程序员

天啊,问题太多了!!!!!!算法

让咱们慢慢分析。缓存

看看善于利用 IO 零拷贝的 MQ 们

咱们知道,Java 世界有不少 MQ:ActiveMQ,kafka,RocketMQ,去哪儿 MQ,而他们则是 Java 世界使用 NIO 零拷贝的大户。安全

然而,他们的性能却大相同,抛开其余的因素,例如网络传输方式,数据结构设计,文件存储方式,咱们仅仅讨论 Broker 端对文件的读写,看看他们有什么不一样。性能优化

下图是楼主查看源码总结的各个 MQ 使用的文件读写方式。网络

  • kafka:record 的读写都是基于 FileChannel。index 读写基于 MMAP(厮大提示)。
  • RocketMQ:读盘基于 MMAP,写盘默认使用 MMAP,可经过修改配置,配置成 FileChannel,缘由是做者想避免 PageCache 的锁竞争,经过两层架构实现读写分离。
  • QMQ: 去哪儿 MQ,读盘使用 MMAP,写盘使用 FileChannel。
  • ActiveMQ 5.15: 读写所有都是基于 RandomAccessFile,这也是咱们抛弃 ActiveMQ 的缘由。

那么,究竟是 MMAP 强,仍是 FileChannel 强?数据结构

MMAP 众所周知,基于 OS 的 mmap 的内存映射技术,经过 MMU 映射文件,使随机读写文件和读写内存类似的速度。架构

那 FileChannel 呢?是零拷贝吗?很遗憾,不是。FileChannel 快,只是由于他是基于 block 的。app

接下来,benchmark everything —— 徐妈.

Benchmark ?

如何 Benchmark? Benchmark 哪些?

既然是读写文件,天然就要看读写性能,这是最基本的。但,注意,一般 MQ 会使用定时刷盘,防止数据丢失,MMAP 和 FileChannel 都有 force 方法,用于将 pageCache 的数据刷到硬盘上。force 会影响性能吗? 答案是会。影响到什么程度呢? 不知道。每次写入的数据大小会影响性能吗,毫无疑问会,但规则是什么呢?FileOutputStream 真的一无可取吗?答案是不必定。

一直以来,文件调优都是艺术,由于影响性能的因素太多,首先,SSD 的出现,已经让传统基于 B+ tree 的树形结构产生了自我疑问,第二,每一个文件系统的性能不一样,Linux ext3 和 ext4 性能天壤之别(删除文件的性能差距在 20 倍左右)。而 Max OS 的 HFS+ 系统被 Linus 称之为“有史以来最垃圾的文件系统”,幸运的是,苹果终于在 2017 年推送了 macOS High Sierra 和 iOS 10.3 系统,这个两个系统都抛弃了 HFS+,换成了性能更高的 APFS。而每一个文件系统又能够设置不一样的调度算法,另外,还有虚拟内存缺页中断带来的性能毛刺.......

(tips:良心的 RocketMQ 提供了 Linux IO 调优的脚本,这点作的不错 :)

跑题了。

楼主写了一个小项目,用于测试 Java MappedByteBuffer & FileChannel & RandomAccessFile & FileXXXputStream 的读写性能。你们也能够在本身的机器上跑跑看。

测试环境

CPU:intel i7 4核8线程 4.2GHz 内存:40GB DDR4 磁盘:SSD 读写 2GB/s 左右 JDK1.8 OS:Mac OS 10.13.6 虚拟内存: 未关闭,大小 9GB

测试注意点:

  1. 为了防止 PageCache 缓存的影响,每次都生成一个新的文件进行读取。
  2. 为了测试不一样数据包对性能的影响,须要使用不一样大小的数据包进行屡次测试。
  3. force 对性能影响很大,应该单独测试。
  4. 使用 1GB 文件进行测试(小文件没有参考意义,大文件 mmap 没法映射)

纯粹读测试

1GB 文件:

测试 MappedByteBuffer & FileChannel & RandomAccessFile & FileInputStream.

大图

从这张图里,咱们看到,mmap 性能完胜,特别是在小数据量的状况下。其余的流,只有在4kb 的状况下,才开始反杀 mmap。所以,读 4kb 如下的数据,请使用 mmap。

再放大看看 mmap 和 FileChannel 的比较:

缩放图

根据上图,咱们看到,在写入数据包大于 4kb 以上的状况下,FileChannel 等一众非零拷贝,基本完胜 mmap,除了那个一次读 1G 文件的 BT 测试。

所以,若是你的数据包大于 4kb,请使用 FileChannel

纯粹写测试

1GB 文件:

测试 MappedByteBuffer & FileChannel & RandomAccessFile & FileInputStream.

大图

从上图,咱们能够看出,mmap 性能仍是同样的稳定。FileChannel 也不差,可是在 32 字节数据量的状况下,还差点意思。

再看缩略图:

写缩略图

咱们看到,64字节 是 FileChannel 和 mmap 性能的分水岭,从 64字节开始,FileChannel 一路反杀,直到 BT 1GB 文件稍稍输了一丢丢。

所以,咱们建议:若是你的数据包大小在 64 字节以上,请使用 FileChannel 写入。

异步 force 测试

咱们知道,RocketMQ 使用异步刷盘,那么异步 force 对性能有没有影响呢?benchmark everything。咱们使用异步线程,每 16kb 刷盘一次,看看性能如何。

异步刷盘

mmap 一直落后,且性能不好,除了在 2048 字节那里有一点点抖动,基本维持 在 4000 左右,而没有 force 的状况下,则在 1500 左右。而 FileChannel 则彻底不受 force 的影响。在个人测试中,1GB 的文件,一次 force 须要 800 毫秒左右。buffer 越大,时间越多,反之则越小。

说个题外话,Kafka 一直不建议使用 force,大概也有这个缘由。固然,Kafka 还有本身的多副本策略保证数据安全。

这里,咱们得出结论,若是你须要常常执行 force,即便是异步的,也请必定不要使用 mmap,请使用 FileChannel。

总结。

基于以上测试,咱们得出一张图表:

假设,咱们的系统的数据包在 1024 - 2048 左右,咱们应该使用什么策略?

答:读使用 mmap,仅仅写使用 FileChannel。

再回过头看看 MQ 的实现者们,彷佛只有 QMQ 是 这么作的。固然,RocketMQ 也提供了 FileChannel 的写选项。但默认 mmap 写加异步刷盘,应该是 broker busy 的元凶吧。

而 Kafka,由于默认不 force,也是使用 FileChannel 进行写入的,为何使用 FileChannel 读呢?大概是由于消息的大小在 4kb 以上吧。

这样一揣测,这些 MQ 的设计彷佛都很是合理。

最后,能不用 force 就别用 force。若是要用 force ,就请使用 FileChannel。

相关文章
相关标签/搜索