正文:java
在上一篇,咱们对IOC核心部分流程已经分析完毕,相信小伙伴们有所收获,从这一篇开始,咱们将会踏上新的旅程,即Spring的另外一核心:AOP!spring
首先,为了让你们能更有效的理解AOP,先带你们过一下AOP中的术语:express
around
, before
和after
等等。许多AOP框架,包括Spring在内,都是以拦截器作通知模型的,并维护着一个以链接点为中心的拦截器链。术语看完了,咱们先上个Demo回顾一下吧~spring-mvc
首先,使用EnableAspectJAutoProxy
注解开启咱们的AOP缓存
@ComponentScan(basePackages = {"com.my.spring.test.aop"}) @Configuration @EnableAspectJAutoProxy public class Main { public static void main(String[] args) { AnnotationConfigApplicationContext context = new AnnotationConfigApplicationContext(Main.class); IService service = context.getBean("service", IService.class); service.doService(); } }
写一个接口mvc
public interface IService { void doService(); }
写一个实现类app
@Service("service") public class ServiceImpl implements IService{ @Override public void doService() { System.out.println("do service ..."); } }
写一个切面框架
@Aspect @Component public class ServiceAspect { @Pointcut(value = "execution(* com.my.spring.test.aop.*.*(..))") public void pointCut() { } @Before(value = "pointCut()") public void methodBefore(JoinPoint joinPoint) { String methodName = joinPoint.getSignature().getName(); System.out.println("执行目标方法 【" + methodName + "】 的【前置通知】,入参:" + Arrays.toString(joinPoint.getArgs())); } @After(value = "pointCut()") public void methodAfter(JoinPoint joinPoint) { String methodName = joinPoint.getSignature().getName(); System.out.println("执行目标方法 【" + methodName + "】 的【后置通知】,入参:" + Arrays.toString(joinPoint.getArgs())); } @AfterReturning(value = "pointCut()") public void methodReturn(JoinPoint joinPoint) { String methodName = joinPoint.getSignature().getName(); System.out.println("执行目标方法 【" + methodName + "】 的【返回通知】,入参:" + Arrays.toString(joinPoint.getArgs())); } @AfterThrowing(value = "pointCut()") public void methodThrow(JoinPoint joinPoint) { String methodName = joinPoint.getSignature().getName(); System.out.println("执行目标方法 【" + methodName + "】 的【异常通知】,入参:" + Arrays.toString(joinPoint.getArgs())); } }
测试运行ide
执行目标方法 【doService】 的【前置通知】,入参:[] do service ... 执行目标方法 【doService】 的【返回通知】,入参:[] 执行目标方法 【doService】 的【后置通知】,入参:[]
以上模块化
Demo看完了,运行效果也出来了,AOP已生效,但如何生效的呢?相比于咱们普通使用Bean的Demo,在这里,咱们只不过加上了一个@EnableAspectJAutoProxy
注解以及一个标识了@Aspectj
的类,那么咱们先看看@EnableAspectJAutoProxy
这个注解作了什么吧~
如下是笔者所画的大体流程图
其中AspectJAutoProxyRegistrar
实现了ImportBeanDefinitionRegistrar
,因此在处理BeanFactoryPostProcessor
逻辑时将会调用registerBeanDefinitions
方法,此时就会把AnnotationAwareAspectJAutoProxyCreator
注册到容器中,其中BeanFactoryPostProcessor
的逻辑就再也不说了,往期文章有过详细分析。而AnnotationAwareAspectJAutoProxyCreator
的类图以下:
咱们发现AnnotationAwareAspectJAutoProxyCreator
是实现了BeanPostProcessor
接口的类,因此它实际上是一个后置处理器,那么,还记得在建立Bean过程当中的BeanPostProcessor
九次调用时机吗?不记得也不要紧,AnnotationAwareAspectJAutoProxyCreator
起做用的地方是在bean的实例化前以及初始化后,分别对应着解析切面和建立动态代理的过程,如今,就让咱们先来看看解析切面的过程吧~
解析切面的流程以下图所示:
咱们已经了解到切面解析的过程是由AnnotationAwareAspectJAutoProxyCreator
完成的,而AnnotationAwareAspectJAutoProxyCreator
又继承了AbstractAutoProxyCreator
,因此首先,咱们先会来到AbstractAutoProxyCreator#postProcessBeforeInstantiation
public Object postProcessBeforeInstantiation(Class<?> beanClass, String beanName) { // class类型是否为(Advice, Pointcut, Advisor, AopInfrastructureBean) // shouldSkip中将会解析切面 if (isInfrastructureClass(beanClass) || shouldSkip(beanClass, beanName)) { this.advisedBeans.put(cacheKey, Boolean.FALSE); return null; } }
调用到子类的AspectJAwareAdvisorAutoProxyCreator#shouldSkip
@Override protected boolean shouldSkip(Class<?> beanClass, String beanName) { // 寻找advisor List<Advisor> candidateAdvisors = findCandidateAdvisors(); for (Advisor advisor : candidateAdvisors) { if (advisor instanceof AspectJPointcutAdvisor && ((AspectJPointcutAdvisor) advisor).getAspectName().equals(beanName)) { return true; } } return super.shouldSkip(beanClass, beanName); }
findCandidateAdvisors
protected List<Advisor> findCandidateAdvisors() { // 寻找实现了Advisor接口的类, 因为咱们通常不会以接口的方式实现切面,这里返回null List<Advisor> advisors = super.findCandidateAdvisors(); if (this.aspectJAdvisorsBuilder != null) { // 这里将解析出全部的切面 advisors.addAll(this.aspectJAdvisorsBuilder.buildAspectJAdvisors()); } return advisors; }
buildAspectJAdvisors
public List<Advisor> buildAspectJAdvisors() { // aspectBeanNames有值则说明切面已解析完毕 List<String> aspectNames = this.aspectBeanNames; // Double Check if (aspectNames == null) { synchronized (this) { aspectNames = this.aspectBeanNames; if (aspectNames == null) { List<Advisor> advisors = new ArrayList<>(); aspectNames = new ArrayList<>(); // 取出是Object子类的bean,其实就是全部的bean String[] beanNames = BeanFactoryUtils.beanNamesForTypeIncludingAncestors( this.beanFactory, Object.class, true, false); for (String beanName : beanNames) { // 得到该bean的class Class<?> beanType = this.beanFactory.getType(beanName); // 判断是否有标识@AspectJ注解 if (this.advisorFactory.isAspect(beanType)) { // 将beanName放入集合中 aspectNames.add(beanName); // 将beanType和beanName封装到AspectMetadata中 AspectMetadata amd = new AspectMetadata(beanType, beanName); // Kind默认为SINGLETON if (amd.getAjType().getPerClause().getKind() == PerClauseKind.SINGLETON) { MetadataAwareAspectInstanceFactory factory = new BeanFactoryAspectInstanceFactory(this.beanFactory, beanName); // 这里会经过@Before @After等标识的方法获取到全部的advisor List<Advisor> classAdvisors = this.advisorFactory.getAdvisors(factory); if (this.beanFactory.isSingleton(beanName)) { // 将获取到的全部advisor放入缓存 this.advisorsCache.put(beanName, classAdvisors); } advisors.addAll(classAdvisors); } } } // 将全部解析过的beanName赋值 this.aspectBeanNames = aspectNames; return advisors; } } } // aspectNames不为空,意味有advisor,取出以前解析好的全部advisor List<Advisor> advisors = new ArrayList<>(); // 获取到全部解析好的advisor for (String aspectName : aspectNames) { List<Advisor> cachedAdvisors = this.advisorsCache.get(aspectName); if (cachedAdvisors != null) { advisors.addAll(cachedAdvisors); } return advisors; }
advisorFactory.getAdvisors
public List<Advisor> getAdvisors(MetadataAwareAspectInstanceFactory aspectInstanceFactory) { // 获取到标识了@AspectJ的class,其实就是刚刚封装的class Class<?> aspectClass = aspectInstanceFactory.getAspectMetadata().getAspectClass(); // 获取className String aspectName = aspectInstanceFactory.getAspectMetadata().getAspectName(); List<Advisor> advisors = new ArrayList<>(); // 拿出该类除了标识@PointCut的全部方法进行遍历 getAdvisorMethods时会对method进行一次排序 // 排序顺序 Around, Before, After, AfterReturning, AfterThrowing for (Method method : getAdvisorMethods(aspectClass)) { // 获取到advisor Advisor advisor = getAdvisor(method, lazySingletonAspectInstanceFactory, 0, aspectName); if (advisor != null) { // 加入到集合中 advisors.add(advisor); } } }
咱们先看下getAdvisorMethods
方法
private List<Method> getAdvisorMethods(Class<?> aspectClass) { final List<Method> methods = new ArrayList<>(); // 循环遍历该类和父类的全部方法 ReflectionUtils.doWithMethods(aspectClass, method -> { // 排除@PointCut标识的方法 if (AnnotationUtils.getAnnotation(method, Pointcut.class) == null) { methods.add(method); } }, ReflectionUtils.USER_DECLARED_METHODS); if (methods.size() > 1) { // 以Around, Before, After, AfterReturning, AfterThrowing的顺序自定义排序 methods.sort(METHOD_COMPARATOR); } return methods; }
不知道小伙伴们对ReflectionUtils.doWithMethods这个工具类熟不熟悉呢,这个工具类在以前分析Bean建立过程时但是出现了好屡次呢,而且咱们也是可使用的
如今,已经获取到切面中的全部方法了,那么接下来就该对这些方法解析并进行封装成advisor了~
getAdvisor
public Advisor getAdvisor(Method candidateAdviceMethod, MetadataAwareAspectInstanceFactory aspectInstanceFactory, int declarationOrderInAspect, String aspectName) { // 获取方法上的切点表达式 AspectJExpressionPointcut expressionPointcut = getPointcut( candidateAdviceMethod, aspectInstanceFactory.getAspectMetadata().getAspectClass()); // 封装成对象返回,建立对象时将会解析方法建立advice return new InstantiationModelAwarePointcutAdvisorImpl(expressionPointcut, candidateAdviceMethod, this, aspectInstanceFactory, declarationOrderInAspect, aspectName); }
获取切点表达式的过程其实很是简单,便是解析方法上的注解,取出注解上的value便可
getPointcut
private AspectJExpressionPointcut getPointcut(Method candidateAdviceMethod, Class<?> candidateAspectClass) { // 查找方法上和AspectJ相关注解 AspectJAnnotation<?> aspectJAnnotation = AbstractAspectJAdvisorFactory.findAspectJAnnotationOnMethod(candidateAdviceMethod); // 设置切点表达式 AspectJExpressionPointcut ajexp = new AspectJExpressionPointcut(candidateAspectClass, new String[0], new Class<?>[0]); // PointcutExpression 为注解上value属性的值 ajexp.setExpression(aspectJAnnotation.getPointcutExpression()); if (this.beanFactory != null) { ajexp.setBeanFactory(this.beanFactory); } return ajexp; }
new InstantiationModelAwarePointcutAdvisorImpl,在这里,才会真正建立出advice
public InstantiationModelAwarePointcutAdvisorImpl(){ //...省略赋值过程... // 实例化出advice this.instantiatedAdvice = instantiateAdvice(this.declaredPointcut); }
private Advice instantiateAdvice(AspectJExpressionPointcut pointcut) { // 获取advice,aspectJAdviceMethod为方法,aspectName为切面类 Advice advice = this.aspectJAdvisorFactory.getAdvice(this.aspectJAdviceMethod, pointcut, this.aspectInstanceFactory, this.declarationOrder, this.aspectName); return (advice != null ? advice : EMPTY_ADVICE); }
public Advice getAdvice(){ // 根据方法获取到注解信息 AspectJAnnotation<?> aspectJAnnotation = AbstractAspectJAdvisorFactory.findAspectJAnnotationOnMethod(candidateAdviceMethod); AbstractAspectJAdvice springAdvice; // 根据注解类型返回对象,建立对象的过程都是同样的,都是调用父类的构造方法 // candidateAdviceMethod为切面的方法,expressionPointcut是切点 switch (aspectJAnnotation.getAnnotationType()) { case AtPointcut return null; case AtAround: springAdvice = new AspectJAroundAdvice( candidateAdviceMethod, expressionPointcut, aspectInstanceFactory); break; case AtBefore: springAdvice = new AspectJMethodBeforeAdvice( candidateAdviceMethod, expressionPointcut, aspectInstanceFactory); break; case AtAfter: springAdvice = new AspectJAfterAdvice( candidateAdviceMethod, expressionPointcut, aspectInstanceFactory); break; //...省略其余的advice default: throw new UnsupportedOperationException( "Unsupported advice type on method: " + candidateAdviceMethod); } return springAdvice; }
springAdvice已建立完毕,意味着切面中的某个方法已经解析完毕了,其余的方法解析过程大体也是类似的
其实解析切面自己并不复杂,只是Spring中将切面类封装来封装去容易令人混乱,如buildAspectJAdvisors
方法中,封装了一个AspectMetadata amd = new AspectMetadata(beanType, beanName);
,又当即发起断定amd.getAjType().getPerClause().getKind() == PerClauseKind.SINGLETON
,其实这里彻底能够变为AjTypeSystem.getAjType(currClass).getPerClause().getKind() == PerClauseKind.SINGLETON
,AjTypeSystem.getAjType(currClass)
为new AspectMetadata
的一部分逻辑,笔者这里给你们总结一下吧。
首先,循环全部的beanName,找到带有@Aspectj注解的class, 获取到class中的全部方法进行遍历解析,取出方法注解上的值(切点:pointcut),而后把方法,切点表达式,封装了BeanFactory,BeanName的factory封装成相应的SpringAdvice, 由SpringAdvice和pointcut组合成一个advisor。
切面已经解析完毕,接下来,咱们就来看看如何把解析出的切面织入到目标方法中吧
但,在这以前,还有必要给小伙伴们补充一点前置知识。
咱们知道,一个bean是否可以被aop代理,取决于它是否知足代理条件,即为是否可以被切点表达式所命中,而在Spring AOP中,bean与切点表达式进行匹配的是AspectJ实现的,并不是Spring所完成的,因此咱们先来看看AspectJ如何匹配出合适的bean的吧
首先须要引入org.aspectj:aspectjweaver
依赖
一个Service,包名为com.my.spring.test.aop
package com.my.spring.test.aop; /** * 切点表达式能够匹配的类 * */ public class ServiceImpl{ /** * 切点表达式能够匹配的方法 */ public void doService() { System.out.println("do service ..."); } public void matchMethod() { System.out.println("ServiceImpl.notMatchMethod"); } }
而后,咱们本身封装一个用于匹配的工具类,具体功能你们看注释哈哈
package com.my.spring.test.aspectj; import org.aspectj.weaver.tools.PointcutExpression; import org.aspectj.weaver.tools.PointcutParser; import org.aspectj.weaver.tools.ShadowMatch; import java.lang.reflect.Method; /** * aop工具 */ public class AOPUtils { // AspectJ的固定写法,获取一个切点解析器 static PointcutParser parser = PointcutParser .getPointcutParserSupportingSpecifiedPrimitivesAndUsingSpecifiedClassLoaderForResolution( PointcutParser.getAllSupportedPointcutPrimitives(), ClassLoader.getSystemClassLoader()); // 切点表达式 private static PointcutExpression pointcutExpression; /** * 初始化工具类,咱们须要先获取一个切点表达式 * * @param expression 表达式 */ public static void init(String expression){ // 解析出一个切点表达式 pointcutExpression = parser.parsePointcutExpression(expression); } /** * 第一次筛选,根据类筛选,也叫作粗筛 * * @param targetClass 目标类 * @return 是否匹配 */ public static boolean firstMatch(Class<?> targetClass){ // 根据类筛选 return pointcutExpression.couldMatchJoinPointsInType(targetClass); } /** * 第二次筛选,根据方法筛选,也叫作精筛,精筛经过则说明彻底匹配 * ps: 也可使用该方法进行精筛,粗筛的目的是提升性能,第一次直接过滤掉不合适的类再慢慢精筛 * * @param method 方法 * @return 是否匹配 */ public static boolean lastMatch(Method method){ // 根据方法筛选 ShadowMatch shadowMatch = pointcutExpression.matchesMethodExecution(method); return shadowMatch.alwaysMatches(); } }
测试
public class AOPUtilsTest { public static void main(String[] args) throws NoSuchMethodException { // 定义表达式 String expression = "execution(* com.my.spring.test.aop.*.*(..))"; // 初始化工具类 AOPUtils.init(expression); // 粗筛 boolean firstMatch = AOPUtils.firstMatch(ServiceImpl.class); if(firstMatch){ System.out.println("第一次筛选经过"); // 正常状况应该是获取全部方法进行遍历,我这里偷懒了~ Method doService = ServiceImpl.class.getDeclaredMethod("doService"); // 精筛 boolean lastMatch = AOPUtils.lastMatch(doService); if(lastMatch){ System.out.println("第二次筛选经过"); } else{ System.out.println("第二次筛选未经过"); } } else { System.out.println("第一次筛选未经过"); } } }
结果(就不截图了,怀疑的小伙伴能够本身试试~)
第一次筛选经过 第二次筛选经过
当咱们新建一个类Test
,把切点表达式换成
execution(* com.my.spring.test.aop.Test.*(..))
测试结果为
第一次筛选未经过
再把切点表达式换成指定的方法
execution(* com.my.spring.test.aop.*.matchMethod(..))
结果
第一次筛选经过 第二次筛选未经过
到这里,小伙伴们应该明白了AspectJ的使用方法吧
接下来,咱们就来看看Spring是如何使用AspectJ匹配出相应的advisor并建立代理对象的吧,如下为建立代理对象的大体路程图
建立代理对象是在bean初始化后完成的,因此对应的beanPostProcessor
调用时机为postProcessAfterInitialization
AbstractAutoProxyCreator#postProcessAfterInitialization
public Object postProcessAfterInitialization(@Nullable Object bean, String beanName) { if (bean != null) { // 获取缓存key值,其实就是beanName Object cacheKey = getCacheKey(bean.getClass(), beanName); // 判断缓存中是否有该对象,有则说明该对象已被动态代理,跳过 if (this.earlyProxyReferences.remove(cacheKey) != bean) { return wrapIfNecessary(bean, beanName, cacheKey); } } return bean; }
wrapIfNecessary
protected Object wrapIfNecessary(Object bean, String beanName, Object cacheKey) { // 根据bean获取到匹配的advisor Object[] specificInterceptors = getAdvicesAndAdvisorsForBean(bean.getClass(), beanName, null); if (specificInterceptors != DO_NOT_PROXY) { // 建立代理对象 Object proxy = createProxy( bean.getClass(), beanName, specificInterceptors, new SingletonTargetSource(bean)); return proxy; } return bean; }
getAdvicesAndAdvisorsForBean
protected Object[] getAdvicesAndAdvisorsForBean( Class<?> beanClass, String beanName, @Nullable TargetSource targetSource) { // 获取合适的advisor List<Advisor> advisors = findEligibleAdvisors(beanClass, beanName); return advisors.toArray(); }
findEligibleAdvisors
protected List<Advisor> findEligibleAdvisors(Class<?> beanClass, String beanName) { // 先获取到全部的advisor, 这里和解析过程相同,因为已经解析好,因此会直接从缓存中取出 List<Advisor> candidateAdvisors = findCandidateAdvisors(); // 筛选出匹配的advisor List<Advisor> eligibleAdvisors = findAdvisorsThatCanApply(candidateAdvisors, beanClass, beanName); // 增长一个默认的advisor extendAdvisors(eligibleAdvisors); if (!eligibleAdvisors.isEmpty()) { // 排序 eligibleAdvisors = sortAdvisors(eligibleAdvisors); } return eligibleAdvisors; }
findAdvisorsThatCanApply
protected List<Advisor> findAdvisorsThatCanApply( List<Advisor> candidateAdvisors, Class<?> beanClass, String beanName) { // 查找匹配的advisor return AopUtils.findAdvisorsThatCanApply(candidateAdvisors, beanClass); }
findAdvisorsThatCanApply
public static List<Advisor> findAdvisorsThatCanApply(List<Advisor> candidateAdvisors, Class<?> clazz){ List<Advisor> eligibleAdvisors = new ArrayList<>(); for (Advisor candidate : candidateAdvisors) { // 判断是否匹配 if (canApply(candidate, clazz, hasIntroductions)) { // 加入到合适的advisors集合中 eligibleAdvisors.add(candidate); } } return eligibleAdvisors; }
canApply
public static boolean canApply(Advisor advisor, Class<?> targetClass, boolean hasIntroductions) { if (advisor instanceof PointcutAdvisor) { PointcutAdvisor pca = (PointcutAdvisor) advisor; // 判断是否匹配 return canApply(pca.getPointcut(), targetClass, hasIntroductions); } else { // It doesn't have a pointcut so we assume it applies. return true; } }
canApply
public static boolean canApply(Pointcut pc, Class<?> targetClass, boolean hasIntroductions) { // 第一次筛选,对class筛选判断是否知足匹配条件 // 这里将会初始化切点表达式 if (!pc.getClassFilter().matches(targetClass)) { return false; } IntroductionAwareMethodMatcher introductionAwareMethodMatcher = null; if (methodMatcher instanceof IntroductionAwareMethodMatcher) { introductionAwareMethodMatcher = (IntroductionAwareMethodMatcher) methodMatcher; } for (Class<?> clazz : classes) { Method[] methods = ReflectionUtils.getAllDeclaredMethods(clazz); // 循环全部方法进行第二次筛选,判断是否有方法知足匹配条件 for (Method method : methods) { if (introductionAwareMethodMatcher != null ? introductionAwareMethodMatcher.matches(method, targetClass, hasIntroductions) : methodMatcher.matches(method, targetClass)) { return true; } } } return false; }
pc.getClassFilter()
public ClassFilter getClassFilter() { obtainPointcutExpression(); return this; }
obtainPointcutExpression
private PointcutExpression obtainPointcutExpression() { if (this.pointcutExpression == null) { // 确认类加载器 this.pointcutClassLoader = determinePointcutClassLoader(); // 建立切点表达式 this.pointcutExpression = buildPointcutExpression(this.pointcutClassLoader); } return this.pointcutExpression; }
buildPointcutExpression
private PointcutExpression buildPointcutExpression(@Nullable ClassLoader classLoader) { // 初始化切点解析器 PointcutParser parser = initializePointcutParser(classLoader); PointcutParameter[] pointcutParameters = new PointcutParameter[this.pointcutParameterNames.length]; for (int i = 0; i < pointcutParameters.length; i++) { pointcutParameters[i] = parser.createPointcutParameter( this.pointcutParameterNames[i], this.pointcutParameterTypes[i]); } // 使用切点解析器进行解析表达式获取切点表达式 return parser.parsePointcutExpression(replaceBooleanOperators(resolveExpression()), this.pointcutDeclarationScope, pointcutParameters); }
initializePointcutParser
private PointcutParser initializePointcutParser(@Nullable ClassLoader classLoader) { // 得到切点解析器 PointcutParser parser = PointcutParser .getPointcutParserSupportingSpecifiedPrimitivesAndUsingSpecifiedClassLoaderForResolution( SUPPORTED_PRIMITIVES, classLoader); parser.registerPointcutDesignatorHandler(new BeanPointcutDesignatorHandler()); return parser; }
pc.getClassFilter即是完成了以上事情,此时再进行调用matchs方法
public boolean matches(Class<?> targetClass) { PointcutExpression pointcutExpression = obtainPointcutExpression(); // 使用切点表达式进行粗筛 return pointcutExpression.couldMatchJoinPointsInType(targetClass); }
introductionAwareMethodMatcher.matches 一样如此
以上即是寻找合适的advisor的过程,下面,就是经过这些advisor进行建立动态代理了
createProxy
protected Object createProxy(Class<?> beanClass, @Nullable String beanName, @Nullable Object[] specificInterceptors, TargetSource targetSource) { ProxyFactory proxyFactory = new ProxyFactory(); proxyFactory.copyFrom(this); // 将specificInterceptors(如今是Object)转化为Advisor返回 Advisor[] advisors = buildAdvisors(beanName, specificInterceptors); // 赋值到proxyFactory的advisors属性中 proxyFactory.addAdvisors(advisors); proxyFactory.setTargetSource(targetSource); customizeProxyFactory(proxyFactory); // 建立动态代理 return proxyFactory.getProxy(getProxyClassLoader()); }
proxyFactory.getProxy
public Object getProxy(@Nullable ClassLoader classLoader) { // 建立代理对象 return createAopProxy().getProxy(classLoader); }
createAopProxy
protected final synchronized AopProxy createAopProxy() { // 建立AOP代理对象 return getAopProxyFactory().createAopProxy(this); }
public AopProxy createAopProxy(AdvisedSupport config) throws AopConfigException { // @EnableAspectJAutoProxy的proxyTargetClass是否配置为true if (config.isOptimize() || config.isProxyTargetClass() || hasNoUserSuppliedProxyInterfaces(config)) { Class<?> targetClass = config.getTargetClass(); if (targetClass == null) { throw new AopConfigException("TargetSource cannot determine target class: " + "Either an interface or a target is required for proxy creation."); } // 如何是接口则建立jdk动态代理 if (targetClass.isInterface() || Proxy.isProxyClass(targetClass)) { return new JdkDynamicAopProxy(config); } // cglib动态代理 return new ObjenesisCglibAopProxy(config); } // 默认是jdk动态代理 else { return new JdkDynamicAopProxy(config); } }
public Object getProxy(@Nullable ClassLoader classLoader) { // 获取到代理的接口 Class<?>[] proxiedInterfaces = AopProxyUtils.completeProxiedInterfaces(this.advised, true); findDefinedEqualsAndHashCodeMethods(proxiedInterfaces); // 建立jdk代理,传入的为JdkDynamicAopProxy对象,里面包含了被代理的bean以及匹配的advisor return Proxy.newProxyInstance(classLoader, proxiedInterfaces, this); }
动态代理建立完成~
对象都给你建立好了,接下固然是开..发起调用咯
如下是调用的大体流程图
代理对象被调用的是invoke方法,咱们所建立的代理对象为JdkDynamicAopProxy
,因此
JdkDynamicAopProxy#invoke
public Object invoke(Object proxy, Method method, Object[] args) throws Throwable { Object oldProxy = null; boolean setProxyContext = false; // 取出包装了被代理bean的对象->建立代理对象时的SingletonTargetSource, advised为ProxyFactory TargetSource targetSource = this.advised.targetSource; Object target = null; // 拿到bean target = targetSource.getTarget(); Class<?> targetClass = (target != null ? target.getClass() : null); // 将全部advisor中的advice取出,并转化为对应的interceptor List<Object> chain = this.advised.getInterceptorsAndDynamicInterceptionAdvice(method, targetClass); // 建立一个最外层的MethodInvocation用于发起调用 MethodInvocation invocation = new ReflectiveMethodInvocation(proxy, target, method, args, targetClass, chain); // 发起链式调用 Object retVal = invocation.proceed(); return retVal; }
咱们先看获取interceptor的过程
getInterceptorsAndDynamicInterceptionAdvice
public List<Object> getInterceptorsAndDynamicInterceptionAdvice(Method method, @Nullable Class<?> targetClass) { // 将全部advisor中的advice取出并封装成intercept return this.advisorChainFactory.getInterceptorsAndDynamicInterceptionAdvice(this, method, targetClass); }
public List<Object> getInterceptorsAndDynamicInterceptionAdvice( Advised config, Method method, @Nullable Class<?> targetClass) { // 建立一个advisor适配器的注册器用于转化advice,建立时将默认注册三个适配器 AdvisorAdapterRegistry registry = GlobalAdvisorAdapterRegistry.getInstance(); Advisor[] advisors = config.getAdvisors(); // 循环遍历全部advisor for (Advisor advisor : advisors) { // 将advisor中的advice转化为interceptor MethodInterceptor[] interceptors = registry.getInterceptors(advisor); interceptorList.addAll(Arrays.asList(interceptors)); return interceptorList; } }
GlobalAdvisorAdapterRegistry.getInstance() 类初始化时调用静态方法
private static AdvisorAdapterRegistry instance = new DefaultAdvisorAdapterRegistry() public static AdvisorAdapterRegistry getInstance() { return instance; }
public DefaultAdvisorAdapterRegistry() { // 注册三个适配器 registerAdvisorAdapter(new MethodBeforeAdviceAdapter()); registerAdvisorAdapter(new AfterReturningAdviceAdapter()); registerAdvisorAdapter(new ThrowsAdviceAdapter()); }
public void registerAdvisorAdapter(AdvisorAdapter adapter) { // 将适配器加入集合 this.adapters.add(adapter); }
registry.getInterceptors 这里面包含了advice转化成interceptor的过程
public MethodInterceptor[] getInterceptors(Advisor advisor) throws UnknownAdviceTypeException { List<MethodInterceptor> interceptors = new ArrayList<>(3); Advice advice = advisor.getAdvice(); // advice自己是否就是MethodInterceptor if (advice instanceof MethodInterceptor) { interceptors.add((MethodInterceptor) advice); } for (AdvisorAdapter adapter : this.adapters) { // 判断advice是哪一个advice 如:(advice instanceof MethodBeforeAdvice) if (adapter.supportsAdvice(advice)) { // 将advice封装到对应的interceptor interceptors.add(adapter.getInterceptor(advisor)); } } return interceptors.toArray(new MethodInterceptor[0]); }
若adapter为MethodBeforeAdviceAdapter
,则
public MethodInterceptor getInterceptor(Advisor advisor) { MethodBeforeAdvice advice = (MethodBeforeAdvice) advisor.getAdvice(); return new MethodBeforeAdviceInterceptor(advice); }
其余advice转化过程相同
以上,便将全部的advice转化成了interceptor,接下来,则是经典的链式递归调用过程
如下过程小伙伴们能够对照流程图阅读,毕竟递归仍是有些复杂,须要必定的功底
ReflectiveMethodInvocation#proceed
public Object proceed() throws Throwable { // currentInterceptorIndex 初始值为-1 // 当currentInterceptorIndex等于advice的数量减一时,则调用目标方法 // 因为advice已排好序,因此调用顺序为before, after, afterReturn, afterThrowing // 注意,并不是调用到相应的advice就会执行advice方法,这里是相似递归调用的方式,会存在一个归过程 // 有些是递的时候发起调用,如beforeAdvice, 但有些则是归的时候发起调用,如afterAdvice // 递归的终止条件则是这下面这个return invokeJoinpoint(); if (this.currentInterceptorIndex == this.interceptorsAndDynamicMethodMatchers.size() - 1) { return invokeJoinpoint(); } // currentInterceptorIndex自增并获取到interceptor Object interceptorOrInterceptionAdvice = this.interceptorsAndDynamicMethodMatchers.get(++this.currentInterceptorIndex); // 将interceptro强转为MethodInterceptor发起调用 return ((MethodInterceptor) interceptorOrInterceptionAdvice).invoke(this); }
此时currentInterceptorIndex值为0,而咱们的advice为4个(去除了默认的),因此当currentInterceptorIndex为3时便会调用咱们的实际方法
首先调用的是MethodBeforeAdviceInterceptor
public Object invoke(MethodInvocation mi) throws Throwable { // 调用前置通知 this.advice.before(mi.getMethod(), mi.getArguments(), mi.getThis()); return mi.proceed(); }
mi为传入的this,全部mi.proceed()将会回到最开始的方法
再次循环,此时currentInterceptorIndex值为1
调用的是AspectJAfterAdvice
public Object invoke(MethodInvocation mi) throws Throwable { try { return mi.proceed(); } finally { // finally意味着无论怎样都会被调用 invokeAdviceMethod(getJoinPointMatch(), null, null); } }
继续,此时currentInterceptorIndex值为2
调用的是AfterReturningAdviceInterceptor
public Object invoke(MethodInvocation mi) throws Throwable { Object retVal = mi.proceed(); this.advice.afterReturning(retVal, mi.getMethod(), mi.getArguments(), mi.getThis()); return retVal; }
继续,此时currentInterceptorIndex值为3
调用的是AspectJAfterThrowingAdvice
public Object invoke(MethodInvocation mi) throws Throwable { try { return mi.proceed(); } catch (Throwable ex) { if (shouldInvokeOnThrowing(ex)) { // 调用异常通知 invokeAdviceMethod(getJoinPointMatch(), null, ex); } // 往外抛出异常 throw ex; } }
因此若是咱们的业务方法发生了异常,会调用到异常通知,而这里又把异常往外抛,因此afterReturn就会被跳过直接到after的finally方法
如今currentInterceptorIndex值为3了,再回调最初的方法中时,就会调用到咱们的业务方法了。调用完毕则进行归的过程,调用过程便结束了。
以上,即是整个AOP的过程了
本篇文章中涉及到图片的矢量图地址为:https://www.processon.com/view/link/5fa8afdae401fd45d109f257,有须要的小伙伴可自取
下文预告:Spring源码分析之事务管理(上)
另外笔者公众号:奇客时间,有更多精彩的文章,有兴趣的同窗,能够关注