[Example of Sklearn] - SVM usge

reference : http://www.csdn.net/article/2012-12-28/2813275-Support-Vector-Machinegit

SVM是什么?github

SVM是一种训练机器学习的算法,能够用于解决分类和回归问题,同时还使用了一种称之为kernel trick的技术进行数据的转换,而后再根据这些转换信息,在可能的输出之中找到一个最优的边界。简单来讲,就是作一些很是复杂的数据转换工做,而后根据预约义的标签或者输出进而计算出如何分离用户的数据。算法

是什么让它变得如此的强大?app

固然,对于SVM来讲,彻底有能力实现分类以及回归。在这篇文章中,Greg Lamp主要关注如何使用SVM进行分类,特别是非线性的SVM或者SVM使用非线性内核。非线性SVM意味着该算法计算的边界没有必要是一条直线,这样作的好处在于,能够捕获更多数据点集之间的复杂关系,而无需靠用户本身来执行困难的转换。其缺点就是因为更多的运算量,训练的时间要长不少。机器学习

什么是kernel trick?学习

kernel trick对接收到的数据进行转换:输入一些你认为比较明显的特征进行分类,输出一些你彻底不认识的数据,这个过程就像解开一个DNA链。你开始是寻找数据的矢量,而后把它传给kernel trick,再进行不断的分解和重组直到造成一个更大的数据集,并且一般你看到的这些数据很是的难以理解。这就是神奇之处,扩展的数据集拥有更明显的边界,SVM算法也可以计算一个更加优化的超平面。优化

其次,假设你是一个农场主,如今你有一个问题——你须要搭建一个篱笆来防止狼对牛群形成伤害。可是篱笆应该建在哪里呢?若是你是一个以数据为驱动的农场主,那么你就须要在你的牧场上,依据牛群和狼群的位置创建一个“分类器”,比较这几种(以下图所示)不一样的分类器,咱们能够看到SVM完成了一个很完美的解决方案。Greg Lamp认为这个故事漂亮的说明了使用非线性分类器的优点。显而易见,逻辑模式以及决策树模式都是使用了直线方法。this

实现代码以下:farmer.py  Python spa

 

import numpy as np 
import pylab as pl 
from sklearn import svm 
from sklearn import linear_model 
from sklearn import tree 
import pandas as pd 
  
  
def plot_results_with_hyperplane(clf, clf_name, df, plt_nmbr): 
    x_min, x_max = df.x.min() - .5, df.x.max() + .5 
    y_min, y_max = df.y.min() - .5, df.y.max() + .5 
  
    # step between points. i.e. [0, 0.02, 0.04, ...] 
    step = .02 
    # to plot the boundary, we're going to create a matrix of every possible point 
    # then label each point as a wolf or cow using our classifier 
    xx, yy = np.meshgrid(np.arange(x_min, x_max, step),
np.arange(y_min, y_max, step)) 
    Z = clf.predict(np.c_[xx.ravel(), yy.ravel()]) 
    # this gets our predictions back into a matrix 
    ZZ = Z.reshape(xx.shape) 
  
    # create a subplot (we're going to have more than 1 plot on a given image) 
    pl.subplot(2, 2, plt_nmbr) 
    # plot the boundaries 
    pl.pcolormesh(xx, yy, Z, cmap=pl.cm.Paired) 
  
    # plot the wolves and cows 
    for animal in df.animal.unique(): 
        pl.scatter(df[df.animal==animal].x, 
                   df[df.animal==animal].y, 
                   marker=animal, 
                   label="cows" if animal=="x" else "wolves", 
                   color='black', 
                   c=df.animal_type, cmap=pl.cm.Paired) 
    pl.title(clf_name) 
    pl.legend(loc="best") 
  
  
data = open("cows_and_wolves.txt").read() 
data = [row.split('\t') for row in data.strip().split('\n')] 
  
animals = [] 
for y, row in enumerate(data): 
    for x, item in enumerate(row): 
        # x's are cows, o's are wolves 
        if item in ['o', 'x']: 
            animals.append([x, y, item]) 
  
df = pd.DataFrame(animals, columns=["x", "y", "animal"]) 
df['animal_type'] = df.animal.apply(lambda x: 0 if x=="x" else 1) 
  
# train using the x and y position coordiantes 
train_cols = ["x", "y"] 
  
clfs = { 
    "SVM": svm.SVC(), 
    "Logistic" : linear_model.LogisticRegression(), 
    "Decision Tree": tree.DecisionTreeClassifier(), 
} 
  
plt_nmbr = 1 
for clf_name, clf in clfs.iteritems(): 
    clf.fit(df[train_cols], df.animal_type) 
    plot_results_with_hyperplane(clf, clf_name, df, plt_nmbr) 
    plt_nmbr += 1 
pl.show() 
 

 

让SVM作一些更难的工做吧!.net

诚然,若是自变量和因变量之间的关系是非线性的,是很难接近SVM的准确性。若是仍是难以理解的话,能够看看下面的例子:假设咱们有一组数据集,它包含了绿色以及红色的点集。咱们首先标绘一下它们的坐标,这些点集构成了一个具体的形状——拥有着红色的轮廓,周围充斥着绿色(看起来就像孟加拉国的国旗)。若是由于某些缘由,咱们丢失了数据集当中1/3的部分,那么在咱们恢复的时候,咱们就但愿寻找一种方法,最大程度地实现这丢失1/3部分的轮廓。

那么咱们如何推测这丢失1/3的部分最接近什么形状?一种方式就是创建一种模型,使用剩下接近80%的数据信息做为一个“训练集”。Greg Lamp选择三种不一样的数据模型分别作了尝试:

  • 逻辑模型(GLM)
  • 决策树模型(DT)
  • SVM 

Greg Lamp对每种数据模型都进行了训练,而后再利用这些模型推测丢失1/3部分的数据集。咱们能够看看这些不一样模型的推测结果:

实现代码以下:svmflag.py Python

  1.  1 import numpy as np 
     2 import pylab as pl 
     3 import pandas as pd 
     4   
     5 from sklearn import svm 
     6 from sklearn import linear_model 
     7 from sklearn import tree 
     8   
     9 from sklearn.metrics import confusion_matrix 
    10   
    11 x_min, x_max = 0, 15 
    12 y_min, y_max = 0, 10 
    13 step = .1 
    14 # to plot the boundary, we're going to create a matrix of every possible point 
    15 # then label each point as a wolf or cow using our classifier 
    16 xx, yy = np.meshgrid(np.arange(x_min, x_max, step), np.arange(y_min, y_max, step)) 
    17   
    18 df = pd.DataFrame(data={'x': xx.ravel(), 'y': yy.ravel()}) 
    19   
    20 df['color_gauge'] = (df.x-7.5)**2 + (df.y-5)**2 
    21 df['color'] = df.color_gauge.apply(lambda x: "red" if x <= 15 else "green") 
    22 df['color_as_int'] = df.color.apply(lambda x: 0 if x=="red" else 1) 
    23   
    24 print "Points on flag:" 
    25 print df.groupby('color').size() 
    26 print 
    27   
    28 figure = 1 
    29   
    30 # plot a figure for the entire dataset 
    31 for color in df.color.unique(): 
    32     idx = df.color==color 
    33     pl.subplot(2, 2, figure) 
    34     pl.scatter(df[idx].x, df[idx].y, colorcolor=color) 
    35     pl.title('Actual') 
    36   
    37   
    38 train_idx = df.x < 10 
    39   
    40 train = df[train_idx] 
    41 test = df[-train_idx] 
    42   
    43   
    44 print "Training Set Size: %d" % len(train) 
    45 print "Test Set Size: %d" % len(test) 
    46   
    47 # train using the x and y position coordiantes 
    48 cols = ["x", "y"] 
    49   
    50 clfs = { 
    51     "SVM": svm.SVC(degree=0.5), 
    52     "Logistic" : linear_model.LogisticRegression(), 
    53     "Decision Tree": tree.DecisionTreeClassifier() 
    54 } 
    55   
    56   
    57 # racehorse different classifiers and plot the results 
    58 for clf_name, clf in clfs.iteritems(): 
    59     figure += 1 
    60   
    61     # train the classifier 
    62     clf.fit(train[cols], train.color_as_int) 
    63   
    64     # get the predicted values from the test set 
    65     test['predicted_color_as_int'] = clf.predict(test[cols]) 
    66     test['pred_color'] 
    67 = test.predicted_color_as_int.apply(lambda x: "red" if x==0 else "green") 
    68      
    69     # create a new subplot on the plot 
    70     pl.subplot(2, 2, figure) 
    71     # plot each predicted color 
    72     for color in test.pred_color.unique(): 
    73         # plot only rows where pred_color is equal to color 
    74         idx = test.pred_color==color 
    75         pl.scatter(test[idx].x, test[idx].y, colorcolor=color) 
    76   
    77     # plot the training set as well 
    78     for color in train.color.unique(): 
    79         idx = train.color==color 
    80         pl.scatter(train[idx].x, train[idx].y, colorcolor=color) 
    81   
    82     # add a dotted line to show the boundary between the training and test set 
    83     # (everything to the right of the line is in the test set) 
    84     #this plots a vertical line 
    85     train_line_y = np.linspace(y_min, y_max) #evenly spaced array from 0 to 10 
    86     train_line_x = np.repeat(10, len(train_line_y))
    87  #repeat 10 (threshold for traininset) n times 
    88     # add a black, dotted line to the subplot 
    89     pl.plot(train_line_x, train_line_y, 'k--', color="black") 
    90      
    91     pl.title(clf_name) 
    92   
    93     print "Confusion Matrix for %s:" % clf_name 
    94     print confusion_matrix(test.color, test.pred_color) 
    95 pl.show()  

     

结论:

从这些实验结果来看,毫无疑问,SVM是绝对的优胜者。可是究其缘由咱们不妨看一下DT模型和GLM模型。很明显,它们都是使用的直线边界。Greg Lamp的输入模型在计算非线性的x, y以及颜色之间的关系时,并无包含任何的转换信息。假如Greg Lamp它们可以定义一些特定的转换信息,可使GLM模型和DT模型可以输出更好的效果,他们为何要浪费时间呢?其实并无复杂的转换或者压缩,SVM仅仅分析错了117/5000个点集(高达98%的准确率,对比而言,DT模型是51%,而GLM模型只有12%!)

局限性在哪里?

不少人都有疑问,既然SVM这么强大,可是为何不能对一切使用SVM呢?很不幸,SVM最神奇的地方刚好也是它最大的软肋!复杂的数据转换信息和边界的产生结果都难以进行阐述。这也是它经常被称之为“black box”的缘由,而GLM模型和DT模型恰好相反,它们很容易进行理解。

相关文章
相关标签/搜索