Suppose a sorted array is rotated at some pivot unknown to you beforehand.数组
(i.e., 0 1 2 4 5 6 7
might become 4 5 6 7 0 1 2
).优化
You are given a target value to search. If found in the array return its index, otherwise return -1.spa
You may assume no duplicate exists in the array.code
解法1:顺序查找,时间复杂度O(n)。blog
class Solution { public: int search(vector<int>& nums, int target) { int n = nums.size(), i = 0; while(i < n && target != nums[i]) i++; return i == n ? -1 : i; } };
解法2:旋转数组是分为两个有序数组,所以能够使用二分查找。若数组首元素小于数组尾元素,则数组没有旋转,直接使用二分查找binarySearch便可;不然(1)初始化left=0,right=n-1,取mid=(left+right)/2;(2)若是target==nums[mid],则直接返回mid;不然若nums[left]<nums[mid],说明nums[left, ..., mid-1]是有序的,而nums[mid+1, ... , n-1]是旋转的,对前者调用binarySearch,若没找到再对后者调用search;若nums[left]>nums[mid],说明nums[left, ..., mid-1]是旋转的,而nums[mid+1, ... , n-1]是有序的,对后者调用binarySearch,若没找到再对前者调用search。get
class Solution { public: int search(vector<int>& nums, int target) { int n = nums.size(); if (n < 2) return n == 1 ? (target == nums[0] ? 0 : -1) : -1; int res, left = 0, right = n - 1; if (nums[left] < nums[right]) res = binarySearch(nums, left, right, target); else { int mid = (left + right) >> 1; if (target == nums[mid]) res = mid; else if (nums[left] < nums[mid]) { if ((res = binarySearch(nums, left, mid - 1, target)) == -1) { vector<int> tmp(nums.begin() + mid + 1, nums.end()); res = search(tmp, target); res = res == -1 ? -1 : res + mid + 1; } } else { if ((res = binarySearch(nums, mid + 1, right, target)) == -1) { vector<int> tmp(nums.begin(), nums.begin() + mid); res = search(tmp, target); } } } return res; } private: int binarySearch(vector<int>& nums, int left, int right, int key) { if (left > right) return -1; int mid = (left + right) >> 1; if (key == nums[mid]) return mid; else if (key > nums[mid]) return binarySearch(nums, mid + 1, right, key); else return binarySearch(nums, left, mid - 1, key); } };
上面的代码能够进一步优化。首先根据nums[mid]和nums[right]的关系能够肯定数组的哪部分是有序的:若是中间的数小于最右边的数,则右半段是有序的,若中间数大于最右边数,则左半段是有序的。而后再根据有序部分首尾两个数字和target的大小关系来判断target存在于哪一部分。it
class Solution { public: int search(vector<int>& nums, int target) { int n = nums.size(); int res = -1, left = 0, right = n - 1; while(left <= right) { int mid = (left + right) >> 1; if(target == nums[mid]) { res = mid; break; } else if(nums[mid] < nums[right]) //后半部分有序 { if(target > nums[mid] && target <= nums[right]) left = mid + 1; else right = mid - 1; } else //前半部分有序 { if(target >= nums[left] && target < nums[mid]) right = mid - 1; else left = mid + 1; } } return res; } };
或者nums[mid]和nums[left]比较也能够,可是要注意mid=left的状况得单独拿出来讨论io
class Solution { public: int search(vector<int>& nums, int target) { int n = nums.size(); int res = -1, left = 0, right = n - 1; while(left <= right) { int mid = ((left + right) >> 1); if(target == nums[mid]) { res = mid; break; } else if(nums[mid] > nums[left]) //前半部分有序 { if(target >= nums[left] && target < nums[mid]) right = mid - 1; else left = mid + 1; } else if(nums[mid] < nums[left]) //后半部分有序 { if(target > nums[mid] && target <= nums[right]) left = mid + 1; else right = mid - 1; } else //nums[mid]==nums[left]的状况,包括mid=left和存在重复值两种状况 left++; } return res; } };