数据丢失(缺失)在现实生活中老是一个问题。 机器学习和数据挖掘等领域因为数据缺失致使的数据质量差,在模型预测的准确性上面临着严重的问题。 在这些领域,缺失值处理是使模型更加准确和有效的重点。python
使用重构索引(reindexing),建立了一个缺乏值的DataFrame。 在输出中,NaN
表示不是数字的值。shell
为了更容易地检测缺失值(以及跨越不一样的数组dtype
),Pandas提供了isnull()
和notnull()
函数,它们也是Series和DataFrame对象的方法 数组
示例1dom
import pandas as pd import numpy as np df = pd.DataFrame(np.random.randn(5, 3), index=['a', 'c', 'e', 'f','h'], columns=['one', 'two', 'three']) df = df.reindex(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h']) print(df) print('\n') print (df['one'].isnull())
输出结果:机器学习
one two three
a 0.036297 -0.615260 -1.341327
b NaN NaN NaN
c -1.908168 -0.779304 0.212467
d NaN NaN NaN
e 0.527409 -2.432343 0.190436
f 1.428975 -0.364970 1.084148
g NaN NaN NaN
h 0.763328 -0.818729 0.240498
a False
b True
c False
d True
e False
f False
g True
h False
Name: one, dtype: bool
示例2函数
import pandas as pd import numpy as np df = pd.DataFrame(np.random.randn(5, 3), index=['a', 'c', 'e', 'f', 'h'],columns=['one', 'two', 'three']) df = df.reindex(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h']) print (df['one'].notnull())
输出结果:
a True
b False
c True
d False
e True
f True
g False
h True
Name: one, dtype: bool
NA
将被视为0
NA
,那么结果将是NA
实例1学习
import pandas as pd import numpy as np df = pd.DataFrame(np.random.randn(5, 3), index=['a', 'c', 'e', 'f', 'h'],columns=['one', 'two', 'three']) df = df.reindex(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h']) print(df) print('\n') print (df['one'].sum())
输出结果:spa
one two three
a -1.191036 0.945107 -0.806292
b NaN NaN NaN
c 0.127794 -1.812588 -0.466076
d NaN NaN NaN
e 2.358568 0.559081 1.486490
f -0.242589 0.574916 -0.831853
g NaN NaN NaN
h -0.328030 1.815404 -1.706736
0.7247067964060545
示例2code
import pandas as pd df = pd.DataFrame(index=[0,1,2,3,4,5],columns=['one','two']) print(df) print('\n') print (df['one'].sum())
输出结果:对象
one two
0 NaN NaN
1 NaN NaN
2 NaN NaN
3 NaN NaN
4 NaN NaN
5 NaN NaN
0
Pandas提供了各类方法来清除缺失的值。fillna()
函数能够经过几种方法用非空数据“填充”NA
值。
如下程序显示如何用0
替换NaN
。
import pandas as pd import numpy as np df = pd.DataFrame(np.random.randn(3, 3), index=['a', 'c', 'e'],columns=['one','two', 'three']) df = df.reindex(['a', 'b', 'c'])
print (df) print('\n') print ("NaN replaced with '0':") print (df.fillna(0))
输出结果:
one two three a -0.479425 -1.711840 -1.453384 b NaN NaN NaN c -0.733606 -0.813315 0.476788
NaN replaced with '0': one two three a -0.479425 -1.711840 -1.453384 b 0.000000 0.000000 0.000000 c -0.733606 -0.813315 0.476788
在这里填充零值; 固然,也能够填写任何其余的值。
不少时候,必须用一些具体的值取代一个通用的值。能够经过应用替换方法来实现这一点。用标量值替换NA
是fillna()
函数的等效行为。
示例
import pandas as pd df = pd.DataFrame({'one':[10,20,30,40,50,2000],'two':[1000,0,30,40,50,60]}) print(df) print('\n') print (df.replace({1000:10,2000:60}))
输出结果:
one two
0 10 1000
1 20 0
2 30 30
3 40 40
4 50 50
5 2000 60
one two
0 10 10
1 20 0
2 30 30
3 40 40
4 50 50
5 60 60
使用重构索引章节讨论的填充概念,来填补缺失的值。
方法 | 动做 |
---|---|
pad/fill |
填充方法向前 |
bfill/backfill |
填充方法向后 |
示例1
import pandas as pd import numpy as np df = pd.DataFrame(np.random.randn(5, 3), index=['a', 'c', 'e', 'f', 'h'],columns=['one', 'two', 'three']) df = df.reindex(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h']) print(df) print('\n') print (df.fillna(method='pad'))
输出结果:
one two three
a -0.023243 1.671621 -1.687063
b NaN NaN NaN
c -0.933355 0.609602 -0.620189
d NaN NaN NaN
e 0.151455 -1.324563 -0.598897
f 0.605670 -0.924828 -1.050643
g NaN NaN NaN
h 0.892414 -0.137194 -1.101791
one two three
a -0.023243 1.671621 -1.687063
b -0.023243 1.671621 -1.687063
c -0.933355 0.609602 -0.620189
d -0.933355 0.609602 -0.620189
e 0.151455 -1.324563 -0.598897
f 0.605670 -0.924828 -1.050643
g 0.605670 -0.924828 -1.050643
h 0.892414 -0.137194 -1.101791
示例2
import pandas as pd import numpy as np df = pd.DataFrame(np.random.randn(5, 3), index=['a', 'c', 'e', 'f', 'h'],columns=['one', 'two', 'three']) df = df.reindex(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h']) print (df.fillna(method='backfill'))
输出结果:
one two three a 2.278454 1.550483 -2.103731 b -0.779530 0.408493 1.247796 c -0.779530 0.408493 1.247796 d 0.262713 -1.073215 0.129808 e 0.262713 -1.073215 0.129808 f -0.600729 1.310515 -0.877586 g 0.395212 0.219146 -0.175024 h 0.395212 0.219146 -0.175024
使用dropna
函数和axis
参数。 默认状况下,axis = 0
,即在行上应用,这意味着若是行内的任何值是NA
,那么整个行被排除。
实例1
import pandas as pd import numpy as np df = pd.DataFrame(np.random.randn(5, 3), index=['a', 'c', 'e', 'f','h'],columns=['one', 'two', 'three']) df = df.reindex(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h']) print (df.dropna())
输出结果 :
one two three a -0.719623 0.028103 -1.093178 c 0.040312 1.729596 0.451805 e -1.029418 1.920933 1.289485 f 1.217967 1.368064 0.527406 h 0.667855 0.147989 -1.035978
示例2
import pandas as pd import numpy as np df = pd.DataFrame(np.random.randn(5, 3), index=['a', 'c', 'e', 'f', 'h'],columns=['one', 'two', 'three']) df = df.reindex(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h']) print (df.dropna(axis=1))
输出结果:
Empty DataFrame Columns: [] Index: [a, b, c, d, e, f, g, h]