前两篇的文章讲解了Volley,HttpURLConnection,今天是对于OKHttp的分析,分析完成将会分析OKIO和retrofit,试图经过这一系列分析,来对Android的网络库的实现有足够充分的了解,固然这里的分析彻底是脱离了对于项目的具体针对性实践,所以在一些细节上会有说欠缺,这也将会是接下来源码分析的下一步,从项目中的应用和实践优化做为出发点。java
OkHttpClient client = new OkHttpClient.Builder() .readTimeout(30, TimeUnit.SECONDS) .build(); Request request = new Request.Builder() .header("User-Agent", "OkHttp Headers.java") .url("http://www.baidu.com") .build();
client.newCall(request).enqueue(new Callback() { @Override public void onFailure(Call call, IOException e) { } @Override public void onResponse(Call call, okhttp3.Response response) throws IOException { } });
okhttp3.Response response = client.newCall(request).execute();
OkHttp的使用首先经过OkHttp的生成器来根据咱们本身的配置建立一个OKHttpClient,而后构造一个请求,设置请求的header,url,请求的body,OkHttp提供了同步和异步两种请求执行方式。这里能够根据本身的需求选择一个合适的方式。web
按照Android每周一轮子的写做风格,基础使用做为一个引子,帮助咱们迅速的切入框架的执行流程,快速的理清整个调用链路,了解该框架的实现,此处咱们仍是延续这种方式。针对上面的使用流程,逐步分析。设计模式
public Call newCall(Request request) { return RealCall.newRealCall(this, request, false /* for web socket */); }
static RealCall newRealCall(OkHttpClient client, Request originalRequest, boolean forWebSocket) { RealCall call = new RealCall(client, originalRequest, forWebSocket); call.eventListener = client.eventListenerFactory().create(call); return call; }
根据建立的请求,构造一个RealCall实例,同时为该RealCall对象设置事件监听器。在EventListener
中,定义了许多的函数,能够监控到网络请求的整个生命周期,包括DNS开始查找,DNS查找结束,链接的开始创建,链接创建失败等等。缓存
在链接创建以后,在异步请求中,将会调用enqueue方法。websocket
public void enqueue(Callback responseCallback) { synchronized (this) { if (executed) throw new IllegalStateException("Already Executed"); executed = true; } captureCallStackTrace(); eventListener.callStart(this); client.dispatcher().enqueue(new AsyncCall(responseCallback)); }
在该方法中,会调用OkHttpClient的Dispatcher的enqueue
方法。在建立OkHttpClient的时候,但开发者未设定Dispatcher时,会默认建立一个Dispatcher。这里按照默认的实现代码进行分析。cookie
synchronized void enqueue(AsyncCall call) { if (runningAsyncCalls.size() < maxRequests && runningCallsForHost(call) < maxRequestsPerHost) { runningAsyncCalls.add(call); executorService().execute(call); } else { readyAsyncCalls.add(call); } }
加入到Dispatchr之中以后,对于请求进行判断,判断是否超过了最大请求数目,是否超过了单个host共享下的请求数目,若是超过了则将其加入到准备执行队列之中。若是请求数目过多的时候,将其放置在一个准备队列之中。对于ArrayDeque的数据结构解释文末。网络请求执行,是经过线程池来实现的,对于线程池的建立和具体的执行问题,将在文末具体分析。网络
在Dispatcher中用来管理请求的数据结构,分别为正在执行的异步请求队列,正在准备的异步请求队列,正在执行的同步请求队列。数据结构
Deque<AsyncCall> runningAsyncCalls = new ArrayDeque<>(); Deque<AsyncCall> readyAsyncCalls = new ArrayDeque<>(); Deque<RealCall> runningSyncCalls = new ArrayDeque<>();
对于请求的具体执行过程,在AsyncCall的execute方法中。app
final class AsyncCall extends NamedRunnable { @Override protected void execute() { boolean signalledCallback = false; try { Response response = getResponseWithInterceptorChain(); ..... } catch (IOException e) { ...... } finally { client.dispatcher().finished(this); } } }
这里首先得到响应结果,在得到响应结果的时候,可能会出现一些异常状况,这里会catch到异常,会回调事件监听器的一些回调函数。对于获取请求响应结果的核心调用就是getResponseWithInterceptorChain
经过层层责任链的执行来得到最终的请求结果。框架
Response getResponseWithInterceptorChain() throws IOException { List<Interceptor> interceptors = new ArrayList<>(); interceptors.addAll(client.interceptors()); interceptors.add(retryAndFollowUpInterceptor); interceptors.add(new BridgeInterceptor(client.cookieJar())); interceptors.add(new CacheInterceptor(client.internalCache())); interceptors.add(new ConnectInterceptor(client)); if (!forWebSocket) { interceptors.addAll(client.networkInterceptors()); } interceptors.add(new CallServerInterceptor(forWebSocket)); Interceptor.Chain chain = new RealInterceptorChain(interceptors, null, null, null, 0, originalRequest, this, eventListener, client.connectTimeoutMillis(), client.readTimeoutMillis(), client.writeTimeoutMillis()); return chain.proceed(originalRequest); }
构建一个Interceptor列表,在其中添加用户设置的拦截器,框架自身的缓存,网络链接等等链接器,而后根据这一系列的拦截器构建出一个Interceptor.Chain实例对象,以后调用其processed方法。
proceed的方法是网络请求执行的核心
public Response proceed(Request request, StreamAllocation streamAllocation, HttpCodec httpCodec, RealConnection connection) throws IOException { if (index >= interceptors.size()) throw new AssertionError(); calls++; //若是已经有存在的流,肯定进入的请求能够使用它 if (this.httpCodec != null && !this.connection.supportsUrl(request.url())) { throw new IllegalStateException("network interceptor " + interceptors.get(index - 1) + " must retain the same host and port"); } if (this.httpCodec != null && calls > 1) { throw new IllegalStateException("network interceptor " + interceptors.get(index - 1) + " must call proceed() exactly once"); } // 调用该链中的下一个拦截器 RealInterceptorChain next = new RealInterceptorChain(interceptors, streamAllocation, httpCodec, connection, index + 1, request, call, eventListener, connectTimeout, readTimeout, writeTimeout); Interceptor interceptor = interceptors.get(index); Response response = interceptor.intercept(next); //确认拦截器是否调用了chain的proceed方法。 if (httpCodec != null && index + 1 < interceptors.size() && next.calls != 1) { throw new IllegalStateException("network interceptor " + interceptor + " must call proceed() exactly once"); } // 判断响应是否为空,为空抛出异常 if (response == null) { throw new NullPointerException("interceptor " + interceptor + " returned null"); } //判断响应体是否为空,抛出异常返回内容体为空 if (response.body() == null) { throw new IllegalStateException( "interceptor " + interceptor + " returned a response with no body"); } return response; }
责任链的处理函数执行的操做大体为对于一些状态进行判断,而后取其中的拦截器构造一个拦截链实例,而后执行拦截器的拦截方法,在其拦截方法中还会继续调用建立的新的RealChain方法的proceed方法,经过这种递归的方式来将数据进行层层包装处理,最终将数据丢回。对于其中的每个拦截器在完成整个网络请求的过程发挥了关键的做用。接下来从第一个拦截器开始逐层次进行分析。
这个拦截器能够将其从失败和有必要的重定向中恢复。多少重定向和受权须要尝试,Chrome会跟随21次重定向,火狐,curl,wget会跟随20次,Safari会跟随16次,Http1.0推荐5次,这里则为20次。
经过一个While true死循环来进行重试操做,在这里创建StreamAllocation,而后建立新的拦截器链实例,而后调用其processed方法,等待返回结果回来。该拦截器在最外层,接下来的拦截器返回的响应结果,最终都会返回到这里被处理。
@Override public Response intercept(Chain chain) throws IOException { Request request = chain.request(); RealInterceptorChain realChain = (RealInterceptorChain) chain; Call call = realChain.call(); EventListener eventListener = realChain.eventListener(); StreamAllocation streamAllocation = new StreamAllocation(client.connectionPool(), createAddress(request.url()), call, eventListener, callStackTrace); this.streamAllocation = streamAllocation; int followUpCount = 0; Response priorResponse = null; while (true) { ..... Response response; boolean releaseConnection = true; try { response = realChain.proceed(request, streamAllocation, null, null); releaseConnection = false; } catch (RouteException e) { //从失败的路由中恢复 if (!recover(e.getLastConnectException(), streamAllocation, false, request)) { throw e.getLastConnectException(); } releaseConnection = false; continue; } catch (IOException e) { boolean requestSendStarted = !(e instanceof ConnectionShutdownException); if (!recover(e, streamAllocation, requestSendStarted, request)) throw e; releaseConnection = false; continue; } finally { // We're throwing an unchecked exception. Release any resources. if (releaseConnection) { streamAllocation.streamFailed(null); streamAllocation.release(); } } Request followUp = followUpRequest(response, streamAllocation.route()); if (followUp == null) { if (!forWebSocket) { streamAllocation.release(); } return response; } closeQuietly(response.body()); //跟随次数判断 if (++followUpCount > MAX_FOLLOW_UPS) { streamAllocation.release(); throw new ProtocolException("Too many follow-up requests: " + followUpCount); } if (followUp.body() instanceof UnrepeatableRequestBody) { streamAllocation.release(); throw new HttpRetryException("Cannot retry streamed HTTP body", response.code()); } if (!sameConnection(response, followUp.url())) { streamAllocation.release(); streamAllocation = new StreamAllocation(client.connectionPool(), createAddress(followUp.url()), call, eventListener, callStackTrace); this.streamAllocation = streamAllocation; } else if (streamAllocation.codec() != null) { throw new IllegalStateException("Closing the body of " + response + " didn't close its backing stream. Bad interceptor?"); } request = followUp; priorResponse = response; } }
这里经过异常捕捉的方式,根据相应的异常出错,采起相应的恢复方式,同时记录相应的出错状态,但达到阀值以后,中止进行拉起重试操做。这次网络请求失败。
应用代码和网络代码之间的桥梁,用来根据用户的一个请求构建一个网络请求,最后,根据网络响应来构建一个用户响应。根据设置的一些头部参数进行相应的处理。好比GZIP压缩问题等等。
public Response intercept(Chain chain) throws IOException { //请求体的构建 Request userRequest = chain.request(); Request.Builder requestBuilder = userRequest.newBuilder(); RequestBody body = userRequest.body(); if (body != null) { MediaType contentType = body.contentType(); if (contentType != null) { requestBuilder.header("Content-Type", contentType.toString()); } long contentLength = body.contentLength(); if (contentLength != -1) { requestBuilder.header("Content-Length", Long.toString(contentLength)); requestBuilder.removeHeader("Transfer-Encoding"); } else { requestBuilder.header("Transfer-Encoding", "chunked"); requestBuilder.removeHeader("Content-Length"); } } if (userRequest.header("Host") == null) { requestBuilder.header("Host", hostHeader(userRequest.url(), false)); } if (userRequest.header("Connection") == null) { requestBuilder.header("Connection", "Keep-Alive"); } //Gzip 压缩转换 boolean transparentGzip = false; if (userRequest.header("Accept-Encoding") == null && userRequest.header("Range") == null) { transparentGzip = true; requestBuilder.header("Accept-Encoding", "gzip"); } List<Cookie> cookies = cookieJar.loadForRequest(userRequest.url()); if (!cookies.isEmpty()) { requestBuilder.header("Cookie", cookieHeader(cookies)); } if (userRequest.header("User-Agent") == null) { requestBuilder.header("User-Agent", Version.userAgent()); } //获取响应结果,对响应结果进行包装 Response networkResponse = chain.proceed(requestBuilder.build()); HttpHeaders.receiveHeaders(cookieJar, userRequest.url(), networkResponse.headers()); Response.Builder responseBuilder = networkResponse.newBuilder() .request(userRequest); if (transparentGzip && "gzip".equalsIgnoreCase(networkResponse.header("Content-Encoding")) && HttpHeaders.hasBody(networkResponse)) { GzipSource responseBody = new GzipSource(networkResponse.body().source()); Headers strippedHeaders = networkResponse.headers().newBuilder() .removeAll("Content-Encoding") .removeAll("Content-Length") .build(); responseBuilder.headers(strippedHeaders); String contentType = networkResponse.header("Content-Type"); responseBuilder.body(new RealResponseBody(contentType, -1L, Okio.buffer(responseBody))); } return responseBuilder.build(); }
做为应用层和网络层的桥梁,其主要目的是在请求到达网络层时,对网络请求进行包装和在网络请求的响应结果回来时,对响应结果进行包装,转到用户层。
用来检测缓存中是否有数据,有检测无变化返回,不然网络请求后存放。
public Response intercept(Chain chain) throws IOException { Response cacheCandidate = cache != null ? cache.get(chain.request()) : null; long now = System.currentTimeMillis(); //获取请求的cache策略 CacheStrategy strategy = new CacheStrategy.Factory(now, chain.request(), cacheCandidate).get(); Request networkRequest = strategy.networkRequest; Response cacheResponse = strategy.cacheResponse; if (cache != null) { cache.trackResponse(strategy); } if (cacheCandidate != null && cacheResponse == null) { closeQuietly(cacheCandidate.body()); // The cache candidate wasn't applicable. Close it. } // 若是咱们既没法进行网络请求又无缓存,返回504错误 if (networkRequest == null && cacheResponse == null) { return new Response.Builder() .request(chain.request()) .protocol(Protocol.HTTP_1_1) .code(504) .message("Unsatisfiable Request (only-if-cached)") .body(Util.EMPTY_RESPONSE) .sentRequestAtMillis(-1L) .receivedResponseAtMillis(System.currentTimeMillis()) .build(); } // 若是咱们不须要网络请求,执行完成返回结果 if (networkRequest == null) { return cacheResponse.newBuilder() .cacheResponse(stripBody(cacheResponse)) .build(); } //执行责任链,根据网络请求获取响应结果 Response networkResponse = null; try { networkResponse = chain.proceed(networkRequest); } finally { // If we're crashing on I/O or otherwise, don't leak the cache body. if (networkResponse == null && cacheCandidate != null) { closeQuietly(cacheCandidate.body()); } } // 获取请求响应后,根据cache状态,对cache内容进行相应的处理 if (cacheResponse != null) { if (networkResponse.code() == HTTP_NOT_MODIFIED) { Response response = cacheResponse.newBuilder() .headers(combine(cacheResponse.headers(), networkResponse.headers())) .sentRequestAtMillis(networkResponse.sentRequestAtMillis()) .receivedResponseAtMillis(networkResponse.receivedResponseAtMillis()) .cacheResponse(stripBody(cacheResponse)) .networkResponse(stripBody(networkResponse)) .build(); networkResponse.body().close(); cache.trackConditionalCacheHit(); cache.update(cacheResponse, response); return response; } else { closeQuietly(cacheResponse.body()); } } //构造一个响应体 Response response = networkResponse.newBuilder() .cacheResponse(stripBody(cacheResponse)) .networkResponse(stripBody(networkResponse)) .build(); if (cache != null) { if (HttpHeaders.hasBody(response) && CacheStrategy.isCacheable(response, networkRequest)) { // Offer this request to the cache. CacheRequest cacheRequest = cache.put(response); return cacheWritingResponse(cacheRequest, response); } if (HttpMethod.invalidatesCache(networkRequest.method())) { try { cache.remove(networkRequest); } catch (IOException ignored) { // The cache cannot be written. } } } return response; }
根据传递的数据,寻找并创建一个健康的链接
@Override public Response intercept(Chain chain) throws IOException { RealInterceptorChain realChain = (RealInterceptorChain) chain; Request request = realChain.request(); StreamAllocation streamAllocation = realChain.streamAllocation(); boolean doExtensiveHealthChecks = !request.method().equals("GET"); HttpCodec httpCodec = streamAllocation.newStream(client, chain, doExtensiveHealthChecks); //获取一个健康链接 RealConnection connection = streamAllocation.connection(); return realChain.proceed(request, streamAllocation, httpCodec, connection); }
寻找一个健康的链接,而后将链接传递给下一个拦截器进行处理。
数据的写入过程,也就是发起网络请求和Server进行交互的过程,而后返回请求数据,这个时候再是层层的返回调用栈,将数据倒回去,而后进行层层的处理。
@Override public Response intercept(Chain chain) throws IOException { RealInterceptorChain realChain = (RealInterceptorChain) chain; HttpCodec httpCodec = realChain.httpStream(); StreamAllocation streamAllocation = realChain.streamAllocation(); RealConnection connection = (RealConnection) realChain.connection(); Request request = realChain.request(); long sentRequestMillis = System.currentTimeMillis(); //请求Event记录 realChain.eventListener().requestHeadersStart(realChain.call()); httpCodec.writeRequestHeaders(request); realChain.eventListener().requestHeadersEnd(realChain.call(), request); Response.Builder responseBuilder = null; if (HttpMethod.permitsRequestBody(request.method()) && request.body() != null) { if ("100-continue".equalsIgnoreCase(request.header("Expect"))) { httpCodec.flushRequest(); realChain.eventListener().responseHeadersStart(realChain.call()); responseBuilder = httpCodec.readResponseHeaders(true); } if (responseBuilder == null) { //开始写入网络请求 realChain.eventListener().requestBodyStart(realChain.call()); long contentLength = request.body().contentLength(); CountingSink requestBodyOut = new CountingSink(httpCodec.createRequestBody(request, contentLength)); BufferedSink bufferedRequestBody = Okio.buffer(requestBodyOut); request.body().writeTo(bufferedRequestBody); bufferedRequestBody.close(); realChain.eventListener() .requestBodyEnd(realChain.call(), requestBodyOut.successfulCount); } else if (!connection.isMultiplexed()) { streamAllocation.noNewStreams(); } } //完成网络请求 httpCodec.finishRequest(); //读取响应内容 if (responseBuilder == null) { realChain.eventListener().responseHeadersStart(realChain.call()); responseBuilder = httpCodec.readResponseHeaders(false); } //获取响应体 Response response = responseBuilder .request(request) .handshake(streamAllocation.connection().handshake()) .sentRequestAtMillis(sentRequestMillis) .receivedResponseAtMillis(System.currentTimeMillis()) .build(); //根据Response Code作相应的处理 int code = response.code(); if (code == 100) { responseBuilder = httpCodec.readResponseHeaders(false); response = responseBuilder .request(request) .handshake(streamAllocation.connection().handshake()) .sentRequestAtMillis(sentRequestMillis) .receivedResponseAtMillis(System.currentTimeMillis()) .build(); code = response.code(); } realChain.eventListener() .responseHeadersEnd(realChain.call(), response); //Code值101是协议升级代码,这里首个判断为向websocket的升级 if (forWebSocket && code == 101) { // Connection is upgrading, but we need to ensure interceptors see a non-null response body. response = response.newBuilder() .body(Util.EMPTY_RESPONSE) .build(); } else { response = response.newBuilder() .body(httpCodec.openResponseBody(response)) .build(); } return response; }
本篇文章算不上对于源码的深度剖析,大概仍是停留在表层的代码逻辑调用,对于其中用到的设计模式,各类技术,和其相比于其它网络库的优点所在,这里暂时都没有作分析,因为本周时间比较近,因此对于性能,优点特征,将会在接下来的一篇深度展开分析。同时下一篇也将会做为对OkIO分析的一个引子。