JavaShuo
栏目
标签
Person Transfer GAN to Bridge Domain Gap for Person Re-Identification(PTGAN+MSMT17)
时间 2021-01-07
栏目
HTML
繁體版
原文
原文链接
论文分为数据集和图像风格迁移算法(两个数据集之间)两部分: 这是属于无监督的迁移,GAN Motivation: 1.数据集和现实的区别:1.规模小2.场景单一 3.光照单一 解决:因此提出了更为复杂的数据集MSMT17。 2.想解决训练集测试集不均衡的问题:(目前训练测试集基本上时1:1的比例) 方法:重用之前的别的数据集训练。但是数据集之前的gap导致识别率低。 Multi-SceneMult
>>阅读原文<<
相关文章
1.
Person Transfer GAN to Bridge Domain Gap for Person Re-identification
2.
【ReID】【Skimming】Unity Style Transfer for Person Re-Identification
3.
Invariance Matters: Exemplar Memory for Domain Adaptive Person Re-identification
4.
Instance-Guided Context Rendering for Cross-Domain Person Re-Identification
5.
【ReID】EANet: Enhancing Alignment for Cross-Domain Person Re-identification
6.
【ReID】【Skimming】Unsupervised Cross-Dataset Transfer Learning for Person Re-identification
7.
Asymmetric Co-Teaching for Unsupervised Cross-Domain Person Re-Identification
8.
EANet: Enhancing Alignment for Cross-Domain Person Re-identification
9.
ICCV2019-行人重识别-Instance-Guided Context Rendering for Cross-Domain Person Re-Identification
10.
1707.Deep Learning for Person Reidentification Using Support Vector Machines 论文笔记
更多相关文章...
•
ASP Transfer 方法
-
ASP 教程
•
Scala for循环
-
Scala教程
•
Java 8 Stream 教程
•
算法总结-股票买卖
相关标签/搜索
person
gap
transfer
gan
domain
bridge
concurrenthashmap#transfer
iframe+domain
tap+bridge
bridge+vlan
HTML
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
1.2 Illustrator多文档的几种排列方式
2.
5.16--java数据类型转换及杂记
3.
性能指标
4.
(1.2)工厂模式之工厂方法模式
5.
Java记录 -42- Java Collection
6.
Java记录 -42- Java Collection
7.
github使用
8.
Android学习笔记(五十):声明、请求和检查许可
9.
20180626
10.
服务扩容可能引入的负面问题及解决方法
本站公众号
欢迎关注本站公众号,获取更多信息
相关文章
1.
Person Transfer GAN to Bridge Domain Gap for Person Re-identification
2.
【ReID】【Skimming】Unity Style Transfer for Person Re-Identification
3.
Invariance Matters: Exemplar Memory for Domain Adaptive Person Re-identification
4.
Instance-Guided Context Rendering for Cross-Domain Person Re-Identification
5.
【ReID】EANet: Enhancing Alignment for Cross-Domain Person Re-identification
6.
【ReID】【Skimming】Unsupervised Cross-Dataset Transfer Learning for Person Re-identification
7.
Asymmetric Co-Teaching for Unsupervised Cross-Domain Person Re-Identification
8.
EANet: Enhancing Alignment for Cross-Domain Person Re-identification
9.
ICCV2019-行人重识别-Instance-Guided Context Rendering for Cross-Domain Person Re-Identification
10.
1707.Deep Learning for Person Reidentification Using Support Vector Machines 论文笔记
>>更多相关文章<<