数据库中的索引就是用来提升查询操做的性能,可是会影响插入、更新和删除的效率,由于数据库不只要执行这些操做,还要负责索引的更新。shell
经过创建索引,影响一部分插入、更新和删除的效率,可是能大大挺高查询的效率,这个仍是很值得的。数据库
为了开始后面的操做,首先经过MongoDB shell插入一些测试数据。dom
1 for(var i=0;i<10;i++){ 2 var randAge = parseInt(5*Math.random()) + 20; 3 var gender = (randAge%2)?"Male":"Female"; 4 db.school.students.insert({"name":"Will"+i, "gender": gender, "age": randAge}); 5 } 6 7 8 /* 个人数据,如下测试都是基于这个测试,因为数据是随机生成,因此测试每次都会不一样 9 { "name" : "Will0", "gender" : "Female", "age" : 22 }, 10 { "name" : "Will1", "gender" : "Female", "age" : 20 }, 11 { "name" : "Will2", "gender" : "Male", "age" : 24 }, 12 { "name" : "Will3", "gender" : "Male", "age" : 23 }, 13 { "name" : "Will4", "gender" : "Male", "age" : 21 }, 14 { "name" : "Will5", "gender" : "Male", "age" : 20 }, 15 { "name" : "Will6", "gender" : "Female", "age" : 20 }, 16 { "name" : "Will7", "gender" : "Female", "age" : 24 }, 17 { "name" : "Will8", "gender" : "Male", "age" : 21 }, 18 { "name" : "Will9", "gender" : "Female", "age" : 24 }, 19 */
建立索引:在MongoDB shell中,能够经过ensureIndex()来建立因此,第一个参数是指定要建立因此的键。性能
经过unique参数能够建立惟一索引。测试
1 > db.school.students.ensureIndex({"name": 1}, {"unique": true})
2 >
查看索引:优化
1 > db.school.students.getIndexes() 2 [ 3 { 4 "v" : 1, 5 "key" : { 6 "_id" : 1 7 }, 8 "ns" : "test.school.students", 9 "name" : "_id_" 10 }, 11 { 12 "v" : 1, 13 "key" : { 14 "name" : 1 15 }, 16 "unique" : true, 17 "ns" : "test.school.students", 18 "name" : "name_1" 19 } 20 ] 21 >
删除索引:spa
1 > db.school.students.dropIndex("name_1") 2 { "nIndexesWas" : 2, "ok" : 1 } 3 >
索引名称:默认状况下,索引的名称是"键_值_键_值…"的形式,当键的数量不少的时候,索引的名字就会很长。code
因此,在建立索引的时候,能够经过"name"参数自定义索引的名字。server
1 > db.school.students.ensureIndex({"name": 1}, {"name": "myIndex"}) 2 >
经过explain()能够获得不少跟find相关的信息,对索引的分析颇有帮助。blog
当有多个可使用的索引时,MongoDB会自动选择最优索引,可是咱们能够经过hint()操做选择咱们想要使用的索引。
下面来看看没有索引时explain()的输出:
1 > db.school.students.find({"name": "Will5"}).explain() 2 { 3 "cursor" : "BasicCursor", 4 "isMultiKey" : false, 5 "n" : 1, 6 "nscannedObjects" : 6, 7 "nscanned" : 6, 8 "nscannedObjectsAllPlans" : 6, 9 "nscannedAllPlans" : 6, 10 "scanAndOrder" : false, 11 "indexOnly" : false, 12 "nYields" : 0, 13 "nChunkSkips" : 0, 14 "millis" : 0, 15 "indexBounds" : { 16 17 }, 18 "server" : "××××:27017" 19 } 20 >
分析:下面选择了几个咱们比较关心的字段
添加索引,再次检查explain()的输出:
1 > db.school.students.ensureIndex({"name": 1}, {"unique": true}) 2 > db.school.students.find({"name": "Will5"}).explain() 3 { 4 "cursor" : "BtreeCursor name_1", 5 "isMultiKey" : false, 6 "n" : 1, 7 "nscannedObjects" : 1, 8 "nscanned" : 1, 9 "nscannedObjectsAllPlans" : 1, 10 "nscannedAllPlans" : 1, 11 "scanAndOrder" : false, 12 "indexOnly" : false, 13 "nYields" : 0, 14 "nChunkSkips" : 0, 15 "millis" : 0, 16 "indexBounds" : { 17 "name" : [ 18 [ 19 "Will5", 20 "Will5" 21 ] 22 ] 23 }, 24 "server" : "××××:27017" 25 } 26 >
单键索引仍是比较简单的,当使用组合索引的时候,就要多考虑一些了。本身也不肯定可否总结的很好,若是错误,但愿你们指出、讨论。
索引创建可能有多种方式,咱们的目标就是减小"nscanned"(固然也有特例,请参照"索引和排序")。
下面分析基于前面生成的数据来分析一下组合索引,假设咱们要查询年龄大于等于23的女学生。
1 > db.school.students.find({"age":{"$gte":23}, "gender":"Female"}).hint("age_1").explain() 2 { 3 "cursor" : "BtreeCursor age_1", 4 "isMultiKey" : false, 5 "n" : 2, 6 "nscannedObjects" : 4, 7 "nscanned" : 4, 8 "nscannedObjectsAllPlans" : 4, 9 "nscannedAllPlans" : 4, 10 "scanAndOrder" : false, 11 "indexOnly" : false, 12 "nYields" : 0, 13 "nChunkSkips" : 0, 14 "millis" : 0, 15 "indexBounds" : { 16 "age" : [ 17 [ 18 23, 19 1.7976931348623157e+308 20 ] 21 ] 22 }, 23 "server" : "××××:27017" 24 } 25 >
索引的分析:
Index |
Documents |
Result |
age:20 |
{ "name" : "Will1", "gender" : "Female", "age" : 20 } |
"n" : 2 |
age:20 |
{ "name" : "Will5", "gender" : "Male", "age" : 20 } |
"nscannedObjects" : 4 |
age:20 |
{ "name" : "Will6", "gender" : "Female", "age" : 20 } |
"nscanned" : 4 |
age:21 |
{ "name" : "Will4", "gender" : "Male", "age" : 21 } |
|
age:21 |
{ "name" : "Will8", "gender" : "Male", "age" : 21 } |
|
age:22 |
{ "name" : "Will0", "gender" : "Female", "age" : 22 } |
|
age:23 |
{ "name" : "Will3", "gender" : "Male", "age" : 23 } |
|
age:24 |
{ "name" : "Will2", "gender" : "Male", "age" : 24 } |
|
age:24 |
{ "name" : "Will7", "gender" : "Female", "age" : 24 } |
|
age:24 |
{ "name" : "Will9", "gender" : "Female", "age" : 24 } |
1 > db.school.students.find({"age":{"$gte":23}, "gender":"Female"}).hint("age_1_gender_1").explain() 2 { 3 "cursor" : "BtreeCursor age_1_gender_1", 4 "isMultiKey" : false, 5 "n" : 2, 6 "nscannedObjects" : 2, 7 "nscanned" : 4, 8 "nscannedObjectsAllPlans" : 2, 9 "nscannedAllPlans" : 4, 10 "scanAndOrder" : false, 11 "indexOnly" : false, 12 "nYields" : 0, 13 "nChunkSkips" : 0, 14 "millis" : 0, 15 "indexBounds" : { 16 "age" : [ 17 [ 18 23, 19 1.7976931348623157e+308 20 ] 21 ], 22 "gender" : [ 23 [ 24 "Female", 25 "Female" 26 ] 27 ] 28 }, 29 "server" : "××××:27017" 30 } 31 >
索引的分析:
Index |
Documents |
Result |
age:20, gender:Female |
{ "name" : "Will1", "gender" : "Female", "age" : 20 } |
"n" : 2 |
age:20, gender:Female |
{ "name" : "Will6", "gender" : "Female", "age" : 20 } |
"nscannedObjects" : 2 |
age:20, gender:Male |
{ "name" : "Will5", "gender" : "Male", "age" : 20 } |
"nscanned" : 4 |
age:21, gender:Male |
{ "name" : "Will4", "gender" : "Male", "age" : 21 } |
|
age:21, gender:Male |
{ "name" : "Will8", "gender" : "Male", "age" : 21 } |
|
age:22, gender:Female |
{ "name" : "Will0", "gender" : "Female", "age" : 22} |
|
age:23, gender:Male |
{ "name" : "Will3", "gender" : "Male", "age" : 23 } |
|
age:24, gender:Female |
{ "name" : "Will7", "gender" : "Female", "age" : 24 } |
|
age:24, gender:Female |
{ "name" : "Will9", "gender" : "Female", "age" : 24 } |
|
age:24, gender:Male |
{ "name" : "Will2", "gender" : "Male", "age" : 24 } |
1 > db.school.students.find({"age":{"$gte":23}, "gender":"Female"}).hint("gender_1_age_1").explain() 2 { 3 "cursor" : "BtreeCursor gender_1_age_1", 4 "isMultiKey" : false, 5 "n" : 2, 6 "nscannedObjects" : 2, 7 "nscanned" : 2, 8 "nscannedObjectsAllPlans" : 2, 9 "nscannedAllPlans" : 2, 10 "scanAndOrder" : false, 11 "indexOnly" : false, 12 "nYields" : 0, 13 "nChunkSkips" : 0, 14 "millis" : 0, 15 "indexBounds" : { 16 "gender" : [ 17 [ 18 "Female", 19 "Female" 20 ] 21 ], 22 "age" : [ 23 [ 24 23, 25 1.7976931348623157e+308 26 ] 27 ] 28 }, 29 "server" : "××××:27017" 30 } 31 >
索引的分析:
Index |
Documents |
Result |
gender:Female, age:20 |
{ "name" : "Will1", "gender" : "Female", "age" : 20 } |
"n" : 2 |
gender:Female, age:20 |
{ "name" : "Will6", "gender" : "Female", "age" : 20 } |
"nscannedObjects" : 2 |
gender:Female, age:22 |
{ "name" : "Will0", "gender" : "Female", "age" : 22 } |
"nscanned" : 2 |
gender:Female, age:24 |
{ "name" : "Will7", "gender" : "Female", "age" : 24 } |
|
gender:Female, age:24 |
{ "name" : "Will9", "gender" : "Female", "age" : 24 } |
|
gender:Male, age:20 |
{ "name" : "Will5", "gender" : "Male", "age" : 20 } |
|
gender:Male, age:21 |
{ "name" : "Will4", "gender" : "Male", "age" : 21 } |
|
gender:Male, age:21 |
{ "name" : "Will8", "gender" : "Male", "age" : 21 } |
|
gender:Male, age:23 |
{ "name" : "Will3", "gender" : "Male", "age" : 23 } |
|
gender:Male, age:24 |
{ "name" : "Will2", "gender" : "Male", "age" : 24 } |
经过上面的例子能够看出,在使用组合索引的时候仍是要考虑不少东西的,因此能够结合explain()来进行分析。
因为咱们前面建立了三个索引,下面咱们直接使用默认查询。
1 > db.school.students.find({"age":{"$gte":23}, "gender":"Female"}).explain() 2 { 3 "cursor" : "BtreeCursor gender_1_age_1", 4 "isMultiKey" : false, 5 "n" : 2, 6 "nscannedObjects" : 2, 7 "nscanned" : 2, 8 "nscannedObjectsAllPlans" : 2, 9 "nscannedAllPlans" : 2, 10 "scanAndOrder" : false, 11 "indexOnly" : false, 12 "nYields" : 0, 13 "nChunkSkips" : 0, 14 "millis" : 0, 15 "indexBounds" : { 16 "gender" : [ 17 [ 18 "Female", 19 "Female" 20 ] 21 ], 22 "age" : [ 23 [ 24 23, 25 1.7976931348623157e+308 26 ] 27 ] 28 }, 29 "server" : "××××:27017" 30 } 31 >
存在多条索引的状况下,MongoDB首选nscanned值最低的索引。
基于上面的例子,咱们加上对"name"的排序操做。这时,咱们能够看到"scanAndOrder"变成了"true"。
1 > db.school.students.find({"age":{"$gte":23}, "gender":"Female"}).sort({"name":1}).explain() 2 { 3 "cursor" : "BtreeCursor gender_1_age_1", 4 "isMultiKey" : false, 5 "n" : 2, 6 "nscannedObjects" : 2, 7 "nscanned" : 2, 8 "nscannedObjectsAllPlans" : 7, 9 "nscannedAllPlans" : 9, 10 "scanAndOrder" : true, 11 "indexOnly" : false, 12 "nYields" : 0, 13 "nChunkSkips" : 0, 14 "millis" : 0, 15 "indexBounds" : { 16 "gender" : [ 17 [ 18 "Female", 19 "Female" 20 ] 21 ], 22 "age" : [ 23 [ 24 23, 25 1.7976931348623157e+308 26 ] 27 ] 28 }, 29 "server" : "××××:27017" 30 }
在这个例子中,"nscanned"是最小的,因此这个方案是查询效率最高的。可是,咱们要注意一下"scanAndOrder",根据MongoDB文档的解释,查询结果的排序不能利用现有的索引,MongoDB会把find找到的结果放入内存从新排序。这样的话,若是数据量很大,会对性能产生很大的影响。
最好的办法是利用索引来进行排序。
在这种状况下,就要加入一个"name"的索引,同时在find操做时使用hint来指定索引方式,由于默认状况MongoDB会选择"nscanned"最小的方式。
1 > db.school.students.ensureIndex({"gender":1,"name":1}) 2 > db.school.students.find({"age":{"$gte":23}, "gender":"Female"}).sort({"name":1}).hint("gender_1_name_1").explain() 3 { 4 "cursor" : "BtreeCursor gender_1_name_1", 5 "isMultiKey" : false, 6 "n" : 2, 7 "nscannedObjects" : 5, 8 "nscanned" : 5, 9 "nscannedObjectsAllPlans" : 5, 10 "nscannedAllPlans" : 5, 11 "scanAndOrder" : false, 12 "indexOnly" : false, 13 "nYields" : 0, 14 "nChunkSkips" : 0, 15 "millis" : 0, 16 "indexBounds" : { 17 "gender" : [ 18 [ 19 "Female", 20 "Female" 21 ] 22 ], 23 "name" : [ 24 [ 25 { 26 "$minElement" : 1 27 }, 28 { 29 "$maxElement" : 1 30 } 31 ] 32 ] 33 }, 34 "server" : "xxxx:27017" 35 } 36 >
经过这种方式,就能够利用索引的排序来避免"scanAndOrder"为true的状况。可是再看看上面的方式,彷佛能够进一步优化,虽然不能减小"nscanned",可是能够减小"nscannedObjects"。
1 > db.school.students.ensureIndex({"gender":1,"name":1,"age":1}) 2 > db.school.students.find({"age":{"$gte":23}, "gender":"Female"}).sort({"name":1}).hint("gender_1_name_1_age_1").explain() 3 { 4 "cursor" : "BtreeCursor gender_1_name_1_age_1", 5 "isMultiKey" : false, 6 "n" : 2, 7 "nscannedObjects" : 2, 8 "nscanned" : 5, 9 "nscannedObjectsAllPlans" : 2, 10 "nscannedAllPlans" : 5, 11 "scanAndOrder" : false, 12 "indexOnly" : false, 13 "nYields" : 0, 14 "nChunkSkips" : 0, 15 "millis" : 0, 16 "indexBounds" : { 17 "gender" : [ 18 [ 19 "Female", 20 "Female" 21 ] 22 ], 23 "name" : [ 24 [ 25 { 26 "$minElement" : 1 27 }, 28 { 29 "$maxElement" : 1 30 } 31 ] 32 ], 33 "age" : [ 34 [ 35 23, 36 1.7976931348623157e+308 37 ] 38 ] 39 }, 40 "server" : "xxxx:27017" 41 } 42 >
MongoDB中,索引还有不少东西,本文只是经过一些例子来介绍了索引的使用,以及组合索引的简单分析
Ps: 本文中全部例子中的命令均可以参考如下连接
http://files.cnblogs.com/wilber2013/index.js