Java8——从新认识HashMap

摘要

HashMap是Java程序员使用频率最高的用于映射(键值对)处理的数据类型。随着JDK(Java Developmet Kit)版本的更新,JDK1.8对HashMap底层的实现进行了优化,例如引入红黑树的数据结构和扩容的优化等。本文结合JDK1.7和JDK1.8的区别,深刻探讨HashMap的结构实现和功能原理。
 html

简介

Java为数据结构中的映射定义了一个接口java.util.Map,此接口主要有四个经常使用的实现类,分别是HashMap、Hashtable、LinkedHashMap和TreeMap,类继承关系以下图所示:java

java.util.map类图

下面针对各个实现类的特色作一些说明:node

(1) HashMap:它根据键的hashCode值存储数据,大多数状况下能够直接定位到它的值,于是具备很快的访问速度,但遍历顺序倒是不肯定的。 HashMap最多只容许一条记录的键为null,容许多条记录的值为null。HashMap非线程安全,即任一时刻能够有多个线程同时写HashMap,可能会致使数据的不一致。若是须要知足线程安全,能够用 Collections的synchronizedMap方法使HashMap具备线程安全的能力,或者使用ConcurrentHashMap。程序员

(2) Hashtable:Hashtable是遗留类,不少映射的经常使用功能与HashMap相似,不一样的是它承自Dictionary类,而且是线程安全的,任一时间只有一个线程能写Hashtable,并发性不如ConcurrentHashMap,由于ConcurrentHashMap引入了分段锁。Hashtable不建议在新代码中使用,不须要线程安全的场合能够用HashMap替换,须要线程安全的场合能够用ConcurrentHashMap替换。算法

(3) LinkedHashMap:LinkedHashMap是HashMap的一个子类,保存了记录的插入顺序,在用Iterator遍历LinkedHashMap时,先获得的记录确定是先插入的,也能够在构造时带参数,按照访问次序排序。数组

(4) TreeMap:TreeMap实现SortedMap接口,可以把它保存的记录根据键排序,默认是按键值的升序排序,也能够指定排序的比较器,当用Iterator遍历TreeMap时,获得的记录是排过序的。若是使用排序的映射,建议使用TreeMap。在使用TreeMap时,key必须实现Comparable接口或者在构造TreeMap传入自定义的Comparator,不然会在运行时抛出java.lang.ClassCastException类型的异常。缓存

对于上述四种Map类型的类,要求映射中的key是不可变对象。不可变对象是该对象在建立后它的哈希值不会被改变。若是对象的哈希值发生变化,Map对象极可能就定位不到映射的位置了。安全

经过上面的比较,咱们知道了HashMap是Java的Map家族中一个普通成员,鉴于它能够知足大多数场景的使用条件,因此是使用频度最高的一个。下文咱们主要结合源码,从存储结构、经常使用方法分析、扩容以及安全性等方面深刻讲解HashMap的工做原理。数据结构

内部实现

搞清楚HashMap,首先须要知道HashMap是什么,即它的存储结构-字段;其次弄明白它能干什么,即它的功能实现-方法。下面咱们针对这两个方面详细展开讲解。多线程

存储结构-字段

从结构实现来说,HashMap是数组+链表+红黑树(JDK1.8增长了红黑树部分)实现的,以下如所示。

hashMap内存结构图

这里须要讲明白两个问题:数据底层具体存储的是什么?这样的存储方式有什么优势呢?

(1) 从源码可知,HashMap类中有一个很是重要的字段,就是 Node[] table,即哈希桶数组,明显它是一个Node的数组。咱们来看Node[JDK1.8]是何物。

static class Node<K,V> implements Map.Entry<K,V> {
        final int hash;    //用来定位数组索引位置
        final K key;
        V value;
        Node<K,V> next;   //链表的下一个node

        Node(int hash, K key, V value, Node<K,V> next) { ... }
        public final K getKey(){ ... }
        public final V getValue() { ... }
        public final String toString() { ... }
        public final int hashCode() { ... }
        public final V setValue(V newValue) { ... }
        public final boolean equals(Object o) { ... }
}

Node是HashMap的一个内部类,实现了Map.Entry接口,本质是就是一个映射(键值对)。上图中的每一个黑色圆点就是一个Node对象。

(2) HashMap就是使用哈希表来存储的。哈希表为解决冲突,能够采用开放地址法和链地址法等来解决问题,Java中HashMap采用了链地址法。链地址法,简单来讲,就是数组加链表的结合。在每一个数组元素上都一个链表结构,当数据被Hash后,获得数组下标,把数据放在对应下标元素的链表上。例如程序执行下面代码:

map.put("美团","小美");

系统将调用"美团"这个key的hashCode()方法获得其hashCode 值(该方法适用于每一个Java对象),而后再经过Hash算法的后两步运算(高位运算和取模运算,下文有介绍)来定位该键值对的存储位置,有时两个key会定位到相同的位置,表示发生了Hash碰撞。固然Hash算法计算结果越分散均匀,Hash碰撞的几率就越小,map的存取效率就会越高。

若是哈希桶数组很大,即便较差的Hash算法也会比较分散,若是哈希桶数组数组很小,即便好的Hash算法也会出现较多碰撞,因此就须要在空间成本和时间成本之间权衡,其实就是在根据实际状况肯定哈希桶数组的大小,并在此基础上设计好的hash算法减小Hash碰撞。那么经过什么方式来控制map使得Hash碰撞的几率又小,哈希桶数组(Node[] table)占用空间又少呢?答案就是好的Hash算法和扩容机制。

在理解Hash和扩容流程以前,咱们得先了解下HashMap的几个字段。从HashMap的默认构造函数源码可知,构造函数就是对下面几个字段进行初始化,源码以下:

int threshold;             // 所能容纳的key-value对极限 
     final float loadFactor;    // 负载因子
     int modCount;  
     int size;

首先,Node[] table的初始化长度length(默认值是16),Load factor为负载因子(默认值是0.75),threshold是HashMap所能容纳的最大数据量的Node(键值对)个数。threshold = length * Load factor。也就是说,在数组定义好长度以后,负载因子越大,所能容纳的键值对个数越多。

结合负载因子的定义公式可知,threshold就是在此Load factor和length(数组长度)对应下容许的最大元素数目,超过这个数目就从新resize(扩容),扩容后的HashMap容量是以前容量的两倍。默认的负载因子0.75是对空间和时间效率的一个平衡选择,建议你们不要修改,除非在时间和空间比较特殊的状况下,若是内存空间不少而又对时间效率要求很高,能够下降负载因子Load factor的值;相反,若是内存空间紧张而对时间效率要求不高,能够增长负载因子loadFactor的值,这个值能够大于1。

size这个字段其实很好理解,就是HashMap中实际存在的键值对数量。注意和table的长度length、容纳最大键值对数量threshold的区别。而modCount字段主要用来记录HashMap内部结构发生变化的次数,主要用于迭代的快速失败。强调一点,内部结构发生变化指的是结构发生变化,例如put新键值对,可是某个key对应的value值被覆盖不属于结构变化。

在HashMap中,哈希桶数组table的长度length大小必须为2的n次方(必定是合数),这是一种很是规的设计,常规的设计是把桶的大小设计为素数。相对来讲素数致使冲突的几率要小于合数,具体证实能够参考http://blog.csdn.net/liuqiyao_01/article/details/14475159,Hashtable初始化桶大小为11,就是桶大小设计为素数的应用(Hashtable扩容后不能保证仍是素数)。HashMap采用这种很是规设计,主要是为了在取模和扩容时作优化,同时为了减小冲突,HashMap定位哈希桶索引位置时,也加入了高位参与运算的过程。

这里存在一个问题,即便负载因子和Hash算法设计的再合理,也免不了会出现拉链过长的状况,一旦出现拉链过长,则会严重影响HashMap的性能。因而,在JDK1.8版本中,对数据结构作了进一步的优化,引入了红黑树。而当链表长度太长(默认超过8)时,链表就转换为红黑树,利用红黑树快速增删改查的特色提升HashMap的性能,其中会用到红黑树的插入、删除、查找等算法。本文再也不对红黑树展开讨论,想了解更多红黑树数据结构的工做原理能够参考http://blog.csdn.net/v_july_v/article/details/6105630

功能实现-方法

HashMap的内部功能实现不少,本文主要从根据key获取哈希桶数组索引位置、put方法的详细执行、扩容过程三个具备表明性的点深刻展开讲解。

1. 肯定哈希桶数组索引位置

无论增长、删除、查找键值对,定位到哈希桶数组的位置都是很关键的第一步。前面说过HashMap的数据结构是数组和链表的结合,因此咱们固然但愿这个HashMap里面的元素位置尽可能分布均匀些,尽可能使得每一个位置上的元素数量只有一个,那么当咱们用hash算法求得这个位置的时候,立刻就能够知道对应位置的元素就是咱们要的,不用遍历链表,大大优化了查询的效率。HashMap定位数组索引位置,直接决定了hash方法的离散性能。先看看源码的实现(方法一+方法二):

方法一:
static final int hash(Object key) {   //jdk1.8 & jdk1.7
     int h;
     // h = key.hashCode() 为第一步 取hashCode值
     // h ^ (h >>> 16)  为第二步 高位参与运算
     return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}
方法二:
static int indexFor(int h, int length) {  //jdk1.7的源码,jdk1.8没有这个方法,可是实现原理同样的
     return h & (length-1);  //第三步 取模运算
}

这里的Hash算法本质上就是三步:取key的hashCode值、高位运算、取模运算

对于任意给定的对象,只要它的hashCode()返回值相同,那么程序调用方法一所计算获得的Hash码值老是相同的。咱们首先想到的就是把hash值对数组长度取模运算,这样一来,元素的分布相对来讲是比较均匀的。可是,模运算的消耗仍是比较大的,在HashMap中是这样作的:调用方法二来计算该对象应该保存在table数组的哪一个索引处。

这个方法很是巧妙,它经过h & (table.length -1)来获得该对象的保存位,而HashMap底层数组的长度老是2的n次方,这是HashMap在速度上的优化。当length老是2的n次方时,h& (length-1)运算等价于对length取模,也就是h%length,可是&比%具备更高的效率。

在JDK1.8的实现中,优化了高位运算的算法,经过hashCode()的高16位异或低16位实现的:(h = k.hashCode()) ^ (h >>> 16),主要是从速度、功效、质量来考虑的,这么作能够在数组table的length比较小的时候,也能保证考虑到高低Bit都参与到Hash的计算中,同时不会有太大的开销。

下面举例说明下,n为table的长度。

hashMap哈希算法例图

2. 分析HashMap的put方法

HashMap的put方法执行过程能够经过下图来理解,本身有兴趣能够去对比源码更清楚地研究学习。

hashMap put方法执行流程图

①.判断键值对数组table[i]是否为空或为null,不然执行resize()进行扩容;

②.根据键值key计算hash值获得插入的数组索引i,若是table[i]==null,直接新建节点添加,转向⑥,若是table[i]不为空,转向③;

③.判断table[i]的首个元素是否和key同样,若是相同直接覆盖value,不然转向④,这里的相同指的是hashCode以及equals;

④.判断table[i] 是否为treeNode,即table[i] 是不是红黑树,若是是红黑树,则直接在树中插入键值对,不然转向⑤;

⑤.遍历table[i],判断链表长度是否大于8,大于8的话把链表转换为红黑树,在红黑树中执行插入操做,不然进行链表的插入操做;遍历过程当中若发现key已经存在直接覆盖value便可;

⑥.插入成功后,判断实际存在的键值对数量size是否超多了最大容量threshold,若是超过,进行扩容。

JDK1.8HashMap的put方法源码以下:

1 public V put(K key, V value) {
 2     // 对key的hashCode()作hash
 3     return putVal(hash(key), key, value, false, true);
 4 }
 5 
 6 final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
 7                boolean evict) {
 8     Node<K,V>[] tab; Node<K,V> p; int n, i;
 9     // 步骤①:tab为空则建立
10     if ((tab = table) == null || (n = tab.length) == 0)
11         n = (tab = resize()).length;
12     // 步骤②:计算index,并对null作处理 
13     if ((p = tab[i = (n - 1) & hash]) == null) 
14         tab[i] = newNode(hash, key, value, null);
15     else {
16         Node<K,V> e; K k;
17         // 步骤③:节点key存在,直接覆盖value
18         if (p.hash == hash &&
19             ((k = p.key) == key || (key != null && key.equals(k))))
20             e = p;
21         // 步骤④:判断该链为红黑树
22         else if (p instanceof TreeNode)
23             e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
24         // 步骤⑤:该链为链表
25         else {
26             for (int binCount = 0; ; ++binCount) {
27                 if ((e = p.next) == null) {
28                     p.next = newNode(hash, key,value,null);
                        //链表长度大于8转换为红黑树进行处理
29                     if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st  
30                         treeifyBin(tab, hash);
31                     break;
32                 }
                    // key已经存在直接覆盖value
33                 if (e.hash == hash &&
34                     ((k = e.key) == key || (key != null && key.equals(k)))) 
35                            break;
36                 p = e;
37             }
38         }
39         
40         if (e != null) { // existing mapping for key
41             V oldValue = e.value;
42             if (!onlyIfAbsent || oldValue == null)
43                 e.value = value;
44             afterNodeAccess(e);
45             return oldValue;
46         }
47     }

48     ++modCount;
49     // 步骤⑥:超过最大容量 就扩容
50     if (++size > threshold)
51         resize();
52     afterNodeInsertion(evict);
53     return null;
54 }

3. 扩容机制

扩容(resize)就是从新计算容量,向HashMap对象里不停的添加元素,而HashMap对象内部的数组没法装载更多的元素时,对象就须要扩大数组的长度,以便能装入更多的元素。固然Java里的数组是没法自动扩容的,方法是使用一个新的数组代替已有的容量小的数组,就像咱们用一个小桶装水,若是想装更多的水,就得换大水桶。

咱们分析下resize的源码,鉴于JDK1.8融入了红黑树,较复杂,为了便于理解咱们仍然使用JDK1.7的代码,好理解一些,本质上区别不大,具体区别后文再说。

1 void resize(int newCapacity) {   //传入新的容量
 2     Entry[] oldTable = table;    //引用扩容前的Entry数组
 3     int oldCapacity = oldTable.length;         
 4     if (oldCapacity == MAXIMUM_CAPACITY) {  //扩容前的数组大小若是已经达到最大(2^30)了
 5         threshold = Integer.MAX_VALUE; //修改阈值为int的最大值(2^31-1),这样之后就不会扩容了
 6         return;
 7     }
 8  
 9     Entry[] newTable = new Entry[newCapacity];  //初始化一个新的Entry数组
10     transfer(newTable);                         //!!将数据转移到新的Entry数组里
11     table = newTable;                           //HashMap的table属性引用新的Entry数组
12     threshold = (int)(newCapacity * loadFactor);//修改阈值
13 }

这里就是使用一个容量更大的数组来代替已有的容量小的数组,transfer()方法将原有Entry数组的元素拷贝到新的Entry数组里。

1 void transfer(Entry[] newTable) {
 2     Entry[] src = table;                   //src引用了旧的Entry数组
 3     int newCapacity = newTable.length;
 4     for (int j = 0; j < src.length; j++) { //遍历旧的Entry数组
 5         Entry<K,V> e = src[j];             //取得旧Entry数组的每一个元素
 6         if (e != null) {
 7             src[j] = null;//释放旧Entry数组的对象引用(for循环后,旧的Entry数组再也不引用任何对象)
 8             do {
 9                 Entry<K,V> next = e.next;
10                 int i = indexFor(e.hash, newCapacity); //!!从新计算每一个元素在数组中的位置
11                 e.next = newTable[i]; //标记[1]
12                 newTable[i] = e;      //将元素放在数组上
13                 e = next;             //访问下一个Entry链上的元素
14             } while (e != null);
15         }
16     }
17 }

newTable[i]的引用赋给了e.next,也就是使用了单链表的头插入方式,同一位置上新元素总会被放在链表的头部位置;这样先放在一个索引上的元素终会被放到Entry链的尾部(若是发生了hash冲突的话),这一点和Jdk1.8有区别,下文详解。在旧数组中同一条Entry链上的元素,经过从新计算索引位置后,有可能被放到了新数组的不一样位置上。

下面举个例子说明下扩容过程。假设了咱们的hash算法就是简单的用key mod 一下表的大小(也就是数组的长度)。其中的哈希桶数组table的size=2, 因此key = 三、七、5,put顺序依次为 五、七、3。在mod 2之后都冲突在table[1]这里了。这里假设负载因子 loadFactor=1,即当键值对的实际大小size 大于 table的实际大小时进行扩容。接下来的三个步骤是哈希桶数组 resize成4,而后全部的Node从新rehash的过程。

jdk1.7扩容例图

下面咱们讲解下JDK1.8作了哪些优化。通过观测能够发现,咱们使用的是2次幂的扩展(指长度扩为原来2倍),因此,元素的位置要么是在原位置,要么是在原位置再移动2次幂的位置。看下图能够明白这句话的意思,n为table的长度,图(a)表示扩容前的key1和key2两种key肯定索引位置的示例,图(b)表示扩容后key1和key2两种key肯定索引位置的示例,其中hash1是key1对应的哈希与高位运算结果。

hashMap 1.8 哈希算法例图1

元素在从新计算hash以后,由于n变为2倍,那么n-1的mask范围在高位多1bit(红色),所以新的index就会发生这样的变化:

hashMap 1.8 哈希算法例图2

所以,咱们在扩充HashMap的时候,不须要像JDK1.7的实现那样从新计算hash,只须要看看原来的hash值新增的那个bit是1仍是0就行了,是0的话索引没变,是1的话索引变成“原索引+oldCap”,能够看看下图为16扩充为32的resize示意图:

jdk1.8 hashMap扩容例图

这个设计确实很是的巧妙,既省去了从新计算hash值的时间,并且同时,因为新增的1bit是0仍是1能够认为是随机的,所以resize的过程,均匀的把以前的冲突的节点分散到新的bucket了。这一块就是JDK1.8新增的优化点。有一点注意区别,JDK1.7中rehash的时候,旧链表迁移新链表的时候,若是在新表的数组索引位置相同,则链表元素会倒置,可是从上图能够看出,JDK1.8不会倒置。有兴趣的同窗能够研究下JDK1.8的resize源码,写的很赞,以下:

1 final Node<K,V>[] resize() {
 2     Node<K,V>[] oldTab = table;
 3     int oldCap = (oldTab == null) ? 0 : oldTab.length;
 4     int oldThr = threshold;
 5     int newCap, newThr = 0;
 6     if (oldCap > 0) {
 7         // 超过最大值就再也不扩充了,就只好随你碰撞去吧
 8         if (oldCap >= MAXIMUM_CAPACITY) {
 9             threshold = Integer.MAX_VALUE;
10             return oldTab;
11         }
12         // 没超过最大值,就扩充为原来的2倍
13         else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
14                  oldCap >= DEFAULT_INITIAL_CAPACITY)
15             newThr = oldThr << 1; // double threshold
16     }
17     else if (oldThr > 0) // initial capacity was placed in threshold
18         newCap = oldThr;
19     else {               // zero initial threshold signifies using defaults
20         newCap = DEFAULT_INITIAL_CAPACITY;
21         newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
22     }
23     // 计算新的resize上限
24     if (newThr == 0) {
25 
26         float ft = (float)newCap * loadFactor;
27         newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
28                   (int)ft : Integer.MAX_VALUE);
29     }
30     threshold = newThr;
31     @SuppressWarnings({"rawtypes","unchecked"})
32         Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
33     table = newTab;
34     if (oldTab != null) {
35         // 把每一个bucket都移动到新的buckets中
36         for (int j = 0; j < oldCap; ++j) {
37             Node<K,V> e;
38             if ((e = oldTab[j]) != null) {
39                 oldTab[j] = null;
40                 if (e.next == null)
41                     newTab[e.hash & (newCap - 1)] = e;
42                 else if (e instanceof TreeNode)
43                     ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
44                 else { // 链表优化重hash的代码块
45                     Node<K,V> loHead = null, loTail = null;
46                     Node<K,V> hiHead = null, hiTail = null;
47                     Node<K,V> next;
48                     do {
49                         next = e.next;
50                         // 原索引
51                         if ((e.hash & oldCap) == 0) {
52                             if (loTail == null)
53                                 loHead = e;
54                             else
55                                 loTail.next = e;
56                             loTail = e;
57                         }
58                         // 原索引+oldCap
59                         else {
60                             if (hiTail == null)
61                                 hiHead = e;
62                             else
63                                 hiTail.next = e;
64                             hiTail = e;
65                         }
66                     } while ((e = next) != null);
67                     // 原索引放到bucket里
68                     if (loTail != null) {
69                         loTail.next = null;
70                         newTab[j] = loHead;
71                     }
72                     // 原索引+oldCap放到bucket里
73                     if (hiTail != null) {
74                         hiTail.next = null;
75                         newTab[j + oldCap] = hiHead;
76                     }
77                 }
78             }
79         }
80     }
81     return newTab;
82 }

线程安全性

在多线程使用场景中,应该尽可能避免使用线程不安全的HashMap,而使用线程安全的ConcurrentHashMap。那么为何说HashMap是线程不安全的,下面举例子说明在并发的多线程使用场景中使用HashMap可能形成死循环。代码例子以下(便于理解,仍然使用JDK1.7的环境):

public class HashMapInfiniteLoop {  

    private static HashMap<Integer,String> map = new HashMap<Integer,String>(2,0.75f);  
    public static void main(String[] args) {  
        map.put(5, "C");  

        new Thread("Thread1") {  
            public void run() {  
                map.put(7, "B");  
                System.out.println(map);  
            };  
        }.start();  
        new Thread("Thread2") {  
            public void run() {  
                map.put(3, "A);  
                System.out.println(map);  
            };  
        }.start();        
    }  
}

其中,map初始化为一个长度为2的数组,loadFactor=0.75,threshold=2*0.75=1,也就是说当put第二个key的时候,map就须要进行resize。

经过设置断点让线程1和线程2同时debug到transfer方法(3.3小节代码块)的首行。注意此时两个线程已经成功添加数据。放开thread1的断点至transfer方法的“Entry next = e.next;” 这一行;而后放开线程2的的断点,让线程2进行resize。结果以下图。

jdk1.7 hashMap死循环例图1

注意,Thread1的 e 指向了key(3),而next指向了key(7),其在线程二rehash后,指向了线程二重组后的链表。

线程一被调度回来执行,先是执行 newTalbe[i] = e, 而后是e = next,致使了e指向了key(7),而下一次循环的next = e.next致使了next指向了key(3)。

jdk1.7 hashMap死循环例图2

jdk1.7 hashMap死循环例图3

e.next = newTable[i] 致使 key(3).next 指向了 key(7)。注意:此时的key(7).next 已经指向了key(3), 环形链表就这样出现了。

jdk1.7 hashMap死循环例图4

因而,当咱们用线程一调用map.get(11)时,悲剧就出现了——Infinite Loop。

JDK1.8与JDK1.7的性能对比

HashMap中,若是key通过hash算法得出的数组索引位置所有不相同,即Hash算法很是好,那样的话,getKey方法的时间复杂度就是O(1),若是Hash算法技术的结果碰撞很是多,假如Hash算极其差,全部的Hash算法结果得出的索引位置同样,那样全部的键值对都集中到一个桶中,或者在一个链表中,或者在一个红黑树中,时间复杂度分别为O(n)和O(lgn)。 鉴于JDK1.8作了多方面的优化,整体性能优于JDK1.7,下面咱们从两个方面用例子证实这一点。

Hash较均匀的状况

为了便于测试,咱们先写一个类Key,以下:

class Key implements Comparable<Key> {

    private final int value;

    Key(int value) {
        this.value = value;
    }

    @Override
    public int compareTo(Key o) {
        return Integer.compare(this.value, o.value);
    }

    @Override
    public boolean equals(Object o) {
        if (this == o) return true;
        if (o == null || getClass() != o.getClass())
            return false;
        Key key = (Key) o;
        return value == key.value;
    }

    @Override
    public int hashCode() {
        return value;
    }
}

这个类复写了equals方法,而且提供了至关好的hashCode函数,任何一个值的hashCode都不会相同,由于直接使用value当作hashcode。为了不频繁的GC,我将不变的Key实例缓存了起来,而不是一遍一遍的建立它们。代码以下:

public class Keys {

    public static final int MAX_KEY = 10_000_000;
    private static final Key[] KEYS_CACHE = new Key[MAX_KEY];

    static {
        for (int i = 0; i < MAX_KEY; ++i) {
            KEYS_CACHE[i] = new Key(i);
        }
    }

    public static Key of(int value) {
        return KEYS_CACHE[value];
    }
}

如今开始咱们的试验,测试须要作的仅仅是,建立不一样size的HashMap(一、十、100、......10000000),屏蔽了扩容的状况,代码以下:

static void test(int mapSize) {

        HashMap<Key, Integer> map = new HashMap<Key,Integer>(mapSize);
        for (int i = 0; i < mapSize; ++i) {
            map.put(Keys.of(i), i);
        }

        long beginTime = System.nanoTime(); //获取纳秒
        for (int i = 0; i < mapSize; i++) {
            map.get(Keys.of(i));
        }
        long endTime = System.nanoTime();
        System.out.println(endTime - beginTime);
    }

    public static void main(String[] args) {
        for(int i=10;i<= 1000 0000;i*= 10){
            test(i);
        }
    }

在测试中会查找不一样的值,而后度量花费的时间,为了计算getKey的平均时间,咱们遍历全部的get方法,计算总的时间,除以key的数量,计算一个平均值,主要用来比较,绝对值可能会受不少环境因素的影响。结果以下:

性能比较表1.png

经过观测测试结果可知,JDK1.8的性能要高于JDK1.7 15%以上,在某些size的区域上,甚至高于100%。因为Hash算法较均匀,JDK1.8引入的红黑树效果不明显,下面咱们看看Hash不均匀的的状况。

Hash极不均匀的状况

假设咱们又一个很是差的Key,它们全部的实例都返回相同的hashCode值。这是使用HashMap最坏的状况。代码修改以下:

class Key implements Comparable<Key> {

    //...

    @Override
    public int hashCode() {
        return 1;
    }
}

仍然执行main方法,得出的结果以下表所示:

性能比较表2.png

从表中结果中可知,随着size的变大,JDK1.7的花费时间是增加的趋势,而JDK1.8是明显的下降趋势,而且呈现对数增加稳定。当一个链表太长的时候,HashMap会动态的将它替换成一个红黑树,这话的话会将时间复杂度从O(n)降为O(logn)。hash算法均匀和不均匀所花费的时间明显也不相同,这两种状况的相对比较,能够说明一个好的hash算法的重要性。

      测试环境:处理器为2.2 GHz Intel Core i7,内存为16 GB 1600 MHz DDR3,SSD硬盘,使用默认的JVM参数,运行在64位的OS X 10.10.1上。

小结

(1) 扩容是一个特别耗性能的操做,因此当程序员在使用HashMap的时候,估算map的大小,初始化的时候给一个大体的数值,避免map进行频繁的扩容。

(2) 负载因子是能够修改的,也能够大于1,可是建议不要轻易修改,除非状况很是特殊。

(3) HashMap是线程不安全的,不要在并发的环境中同时操做HashMap,建议使用ConcurrentHashMap。

(4) JDK1.8引入红黑树大程度优化了HashMap的性能。

(5) 还没升级JDK1.8的,如今开始升级吧。HashMap的性能提高仅仅是JDK1.8的冰山一角。

参考

  1. JDK1.7&JDK1.8 源码。
  2. CSDN博客频道,HashMap多线程死循环问题,2014。
  3. 红黑联盟,Java类集框架之HashMap(JDK1.8)源码剖析,2015。
  4. CSDN博客频道, 教你初步了解红黑树,2010。
  5. Java Code Geeks,HashMap performance improvements in Java 8,2014。
  6. Importnew,危险!在HashMap中将可变对象用做Key,2014。
  7. CSDN博客频道,为何通常hashtable的桶数会取一个素数,2013。
相关文章
相关标签/搜索