Java为数据结构中的映射定义了一个接口java.util.Map,此接口主要有四个经常使用的实现类,分别是HashMap、Hashtable、LinkedHashMap和TreeMap,类继承关系以下图所示:html
下面针对各个实现类的特色作一些说明:java
(1) HashMap:它根据键的hashCode值存储数据,大多数状况下能够直接定位到它的值,于是具备很快的访问速度,但遍历顺序倒是不肯定的。 HashMap最多只容许一条记录的键为null,容许多条记录的值为null。HashMap非线程安全,即任一时刻能够有多个线程同时写HashMap,可能会致使数据的不一致。若是须要知足线程安全,能够用 Collections的synchronizedMap方法使HashMap具备线程安全的能力,或者使用ConcurrentHashMap。node
(2) Hashtable:Hashtable是遗留类,不少映射的经常使用功能与HashMap相似,不一样的是它承自Dictionary类,而且是线程安全的,任一时间只有一个线程能写Hashtable,并发性不如ConcurrentHashMap,由于ConcurrentHashMap引入了分段锁。Hashtable不建议在新代码中使用,不须要线程安全的场合能够用HashMap替换,须要线程安全的场合能够用ConcurrentHashMap替换。程序员
(3) LinkedHashMap:LinkedHashMap是HashMap的一个子类,保存了记录的插入顺序,在用Iterator遍历LinkedHashMap时,先获得的记录确定是先插入的,也能够在构造时带参数,按照访问次序排序。算法
(4) TreeMap:TreeMap实现SortedMap接口,可以把它保存的记录根据键排序,默认是按键值的升序排序,也能够指定排序的比较器,当用Iterator遍历TreeMap时,获得的记录是排过序的。若是使用排序的映射,建议使用TreeMap。在使用TreeMap时,key必须实现Comparable接口或者在构造TreeMap传入自定义的Comparator,不然会在运行时抛出java.lang.ClassCastException类型的异常。数组
对于上述四种Map类型的类,要求映射中的key是不可变对象。不可变对象是该对象在建立后它的哈希值不会被改变。若是对象的哈希值发生变化,Map对象极可能就定位不到映射的位置了。缓存
经过上面的比较,咱们知道了HashMap是Java的Map家族中一个普通成员,鉴于它能够知足大多数场景的使用条件,因此是使用频度最高的一个。下文咱们主要结合源码,从存储结构、经常使用方法分析、扩容以及安全性等方面深刻讲解HashMap的工做原理。安全
搞清楚HashMap,首先须要知道HashMap是什么,即它的存储结构-字段;其次弄明白它能干什么,即它的功能实现-方法。下面咱们针对这两个方面详细展开讲解。数据结构
从结构实现来说,HashMap是数组+链表+红黑树(JDK1.8增长了红黑树部分)实现的,以下如所示。多线程
这里须要讲明白两个问题:数据底层具体存储的是什么?这样的存储方式有什么优势呢?
(1) 从源码可知,HashMap类中有一个很是重要的字段,就是 Node[] table,即哈希桶数组,明显它是一个Node的数组。咱们来看Node[JDK1.8]是何物。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
|
static
class
Node<K,V>
implements
Map.Entry<K,V> {
final
int
hash;
//用来定位数组索引位置
final
K key;
V value;
Node<K,V> next;
//链表的下一个node
Node(
int
hash, K key, V value, Node<K,V> next) { ... }
public
final
K getKey(){ ... }
public
final
V getValue() { ... }
public
final
String toString() { ... }
public
final
int
hashCode() { ... }
public
final
V setValue(V newValue) { ... }
public
final
boolean
equals(Object o) { ... }
}
|
Node是HashMap的一个内部类,实现了Map.Entry接口,本质是就是一个映射(键值对)。上图中的每一个黑色圆点就是一个Node对象。
(2) HashMap就是使用哈希表来存储的。哈希表为解决冲突,能够采用开放地址法和链地址法等来解决问题,Java中HashMap采用了链地址法。链地址法,简单来讲,就是数组加链表的结合。在每一个数组元素上都一个链表结构,当数据被Hash后,获得数组下标,把数据放在对应下标元素的链表上。例如程序执行下面代码:
1
|
map.put(
"美团"
,
"小美"
);
|
系统将调用”美团”这个key的hashCode()方法获得其hashCode 值(该方法适用于每一个Java对象),而后再经过Hash算法的后两步运算(高位运算和取模运算,下文有介绍)来定位该键值对的存储位置,有时两个key会定位到相同的位置,表示发生了Hash碰撞。固然Hash算法计算结果越分散均匀,Hash碰撞的几率就越小,map的存取效率就会越高。
若是哈希桶数组很大,即便较差的Hash算法也会比较分散,若是哈希桶数组数组很小,即便好的Hash算法也会出现较多碰撞,因此就须要在空间成本和时间成本之间权衡,其实就是在根据实际状况肯定哈希桶数组的大小,并在此基础上设计好的hash算法减小Hash碰撞。那么经过什么方式来控制map使得Hash碰撞的几率又小,哈希桶数组(Node[] table)占用空间又少呢?答案就是好的Hash算法和扩容机制。
在理解Hash和扩容流程以前,咱们得先了解下HashMap的几个字段。从HashMap的默认构造函数源码可知,构造函数就是对下面几个字段进行初始化,源码以下:
1
2
3
4
|
int
threshold;
// 所能容纳的key-value对极限
final
float
loadFactor;
// 负载因子
int
modCount;
int
size;
|
首先,Node[] table的初始化长度length(默认值是16),Load factor为负载因子(默认值是0.75),threshold是HashMap所能容纳的最大数据量的Node(键值对)个数。threshold = length * Load factor。也就是说,在数组定义好长度以后,负载因子越大,所能容纳的键值对个数越多。
结合负载因子的定义公式可知,threshold就是在此Load factor和length(数组长度)对应下容许的最大元素数目,超过这个数目就从新resize(扩容),扩容后的HashMap容量是以前容量的两倍。默认的负载因子0.75是对空间和时间效率的一个平衡选择,建议你们不要修改,除非在时间和空间比较特殊的状况下,若是内存空间不少而又对时间效率要求很高,能够下降负载因子Load factor的值;相反,若是内存空间紧张而对时间效率要求不高,能够增长负载因子loadFactor的值,这个值能够大于1。
size这个字段其实很好理解,就是HashMap中实际存在的键值对数量。注意和table的长度length、容纳最大键值对数量threshold的区别。而modCount字段主要用来记录HashMap内部结构发生变化的次数,主要用于迭代的快速失败。强调一点,内部结构发生变化指的是结构发生变化,例如put新键值对,可是某个key对应的value值被覆盖不属于结构变化。
在HashMap中,哈希桶数组table的长度length大小必须为2的n次方(必定是合数),这是一种很是规的设计,常规的设计是把桶的大小设计为素数。相对来讲素数致使冲突的几率要小于合数,具体证实能够参考http://blog.csdn.net/liuqiyao_01/article/details/14475159,Hashtable初始化桶大小为11,就是桶大小设计为素数的应用(Hashtable扩容后不能保证仍是素数)。HashMap采用这种很是规设计,主要是为了在取模和扩容时作优化,同时为了减小冲突,HashMap定位哈希桶索引位置时,也加入了高位参与运算的过程。
这里存在一个问题,即便负载因子和Hash算法设计的再合理,也免不了会出现拉链过长的状况,一旦出现拉链过长,则会严重影响HashMap的性能。因而,在JDK1.8版本中,对数据结构作了进一步的优化,引入了红黑树。而当链表长度太长(默认超过8)时,链表就转换为红黑树,利用红黑树快速增删改查的特色提升HashMap的性能,其中会用到红黑树的插入、删除、查找等算法。本文再也不对红黑树展开讨论,想了解更多红黑树数据结构的工做原理能够参考http://blog.csdn.net/v_july_v/article/details/6105630。
HashMap的内部功能实现不少,本文主要从根据key获取哈希桶数组索引位置、put方法的详细执行、扩容过程三个具备表明性的点深刻展开讲解。
无论增长、删除、查找键值对,定位到哈希桶数组的位置都是很关键的第一步。前面说过HashMap的数据结构是数组和链表的结合,因此咱们固然但愿这个HashMap里面的元素位置尽可能分布均匀些,尽可能使得每一个位置上的元素数量只有一个,那么当咱们用hash算法求得这个位置的时候,立刻就能够知道对应位置的元素就是咱们要的,不用遍历链表,大大优化了查询的效率。HashMap定位数组索引位置,直接决定了hash方法的离散性能。先看看源码的实现(方法一+方法二):
1
2
3
4
5
6
7
8
9
10
11
|
方法一:
static
final
int
hash(Object key) {
//jdk1.8 & jdk1.7
int
h;
// h = key.hashCode() 为第一步 取hashCode值
// h ^ (h >>> 16) 为第二步 高位参与运算
return
(key ==
null
) ?
0
: (h = key.hashCode()) ^ (h >>>
16
);
}
方法二:
static
int
indexFor(
int
h,
int
length) {
//jdk1.7的源码,jdk1.8没有这个方法,可是实现原理同样的
return
h & (length-
1
);
//第三步 取模运算
}
|
这里的Hash算法本质上就是三步:取key的hashCode值、高位运算、取模运算。
对于任意给定的对象,只要它的hashCode()返回值相同,那么程序调用方法一所计算获得的Hash码值老是相同的。咱们首先想到的就是把hash值对数组长度取模运算,这样一来,元素的分布相对来讲是比较均匀的。可是,模运算的消耗仍是比较大的,在HashMap中是这样作的:调用方法二来计算该对象应该保存在table数组的哪一个索引处。
这个方法很是巧妙,它经过h & (table.length -1)来获得该对象的保存位,而HashMap底层数组的长度老是2的n次方,这是HashMap在速度上的优化。当length老是2的n次方时,h& (length-1)运算等价于对length取模,也就是h%length,可是&比%具备更高的效率。
在JDK1.8的实现中,优化了高位运算的算法,经过hashCode()的高16位异或低16位实现的:(h = k.hashCode()) ^ (h >>> 16),主要是从速度、功效、质量来考虑的,这么作能够在数组table的length比较小的时候,也能保证考虑到高低Bit都参与到Hash的计算中,同时不会有太大的开销。
下面举例说明下,n为table的长度。
HashMap的put方法执行过程能够经过下图来理解,本身有兴趣能够去对比源码更清楚地研究学习。
①.判断键值对数组table[i]是否为空或为null,不然执行resize()进行扩容;
②.根据键值key计算hash值获得插入的数组索引i,若是table[i]==null,直接新建节点添加,转向⑥,若是table[i]不为空,转向③;
③.判断table[i]的首个元素是否和key同样,若是相同直接覆盖value,不然转向④,这里的相同指的是hashCode以及equals;
④.判断table[i] 是否为treeNode,即table[i] 是不是红黑树,若是是红黑树,则直接在树中插入键值对,不然转向⑤;
⑤.遍历table[i],判断链表长度是否大于8,大于8的话把链表转换为红黑树,在红黑树中执行插入操做,不然进行链表的插入操做;遍历过程当中若发现key已经存在直接覆盖value便可;
⑥.插入成功后,判断实际存在的键值对数量size是否超多了最大容量threshold,若是超过,进行扩容。
JDK1.8HashMap的put方法源码以下:
1
public
V put(K key, V value) {
2
// 对key的hashCode()作hash
3
return
putVal(hash(key), key, value,
false
,
true
);
4
}
5
6
final
V putVal(
int
hash, K key, V value,
boolean
onlyIfAbsent,
7
boolean
evict) {
8
Node<K,V>[] tab; Node<K,V> p;
int
n, i;
9
// 步骤①:tab为空则建立
10
if
((tab = table) ==
null
|| (n = tab.length) ==
0
)
11
n = (tab = resize()).length;
12
// 步骤②:计算index,并对null作处理
13
if
((p = tab[i = (n -
1
) & hash]) ==
null
)
14
tab[i] = newNode(hash, key, value,
null
);
15
else
{
16
Node<K,V> e; K k;
17
// 步骤③:节点key存在,直接覆盖value
18
if
(p.hash == hash &&
19
((k = p.key) == key || (key !=
null
&& key.equals(k))))
20
e = p;
21
// 步骤④:判断该链为红黑树
22
else
if
(p
instanceof
TreeNode)
23
e = ((TreeNode<K,V>)p).putTreeVal(
this
, tab, hash, key, value);
24
// 步骤⑤:该链为链表
25
else
{
26
for
(
int
binCount =
0
; ; ++binCount) {
27
if
((e = p.next) ==
null
) {
28
p.next = newNode(hash, key,value,
null
);
//链表长度大于8转换为红黑树进行处理
29
if
(binCount >= TREEIFY_THRESHOLD -
1
)
// -1 for 1st
30
treeifyBin(tab, hash);
31
break
;
32
}
// key已经存在直接覆盖value
33
if
(e.hash == hash &&
34
((k = e.key) == key || (key !=
null
&& key.equals(k))))
break
;
36
p = e;
37
}
38
}
39
40
if
(e !=
null
) {
// existing mapping for key
41
V oldValue = e.value;
42
if
(!onlyIfAbsent || oldValue ==
null
)
43
e.value = value;
44
afterNodeAccess(e);
45
return
oldValue;
46
}
47
}
48
++modCount;
49
// 步骤⑥:超过最大容量 就扩容
50
if
(++size > threshold)
51
resize();
52
afterNodeInsertion(evict);
53
return
null
;
54
}
|
扩容(resize)就是从新计算容量,向HashMap对象里不停的添加元素,而HashMap对象内部的数组没法装载更多的元素时,对象就须要扩大数组的长度,以便能装入更多的元素。固然Java里的数组是没法自动扩容的,方法是使用一个新的数组代替已有的容量小的数组,就像咱们用一个小桶装水,若是想装更多的水,就得换大水桶。
咱们分析下resize的源码,鉴于JDK1.8融入了红黑树,较复杂,为了便于理解咱们仍然使用JDK1.7的代码,好理解一些,本质上区别不大,具体区别后文再说。
1
void
resize(
int
newCapacity) {
//传入新的容量
2
Entry[] oldTable = table;
//引用扩容前的Entry数组
3
int
oldCapacity = oldTable.length;
4
if
(oldCapacity == MAXIMUM_CAPACITY) {
//扩容前的数组大小若是已经达到最大(2^30)了
5
threshold = Integer.MAX_VALUE;
//修改阈值为int的最大值(2^31-1),这样之后就不会扩容了
6
return
;
7
}
8
9
Entry[] newTable =
new
Entry[newCapacity];
//初始化一个新的Entry数组
10
transfer(newTable);
//!!将数据转移到新的Entry数组里
11
table = newTable;
//HashMap的table属性引用新的Entry数组
12
threshold = (
int
)(newCapacity * loadFactor);
//修改阈值
13
}
|
这里就是使用一个容量更大的数组来代替已有的容量小的数组,transfer()方法将原有Entry数组的元素拷贝到新的Entry数组里。
1
void
transfer(Entry[] newTable) {
2
Entry[] src = table;
//src引用了旧的Entry数组
3
int
newCapacity = newTable.length;
4
for
(
int
j =
0
; j < src.length; j++) {
//遍历旧的Entry数组
5
Entry<K,V> e = src[j];
//取得旧Entry数组的每一个元素
6
if
(e !=
null
) {
7
src[j] =
null
;
//释放旧Entry数组的对象引用(for循环后,旧的Entry数组再也不引用任何对象)
8
do
{
9
Entry<K,V> next = e.next;
10
int
i = indexFor(e.hash, newCapacity);
//!!从新计算每一个元素在数组中的位置
11
e.next = newTable[i];
//标记[1]
12
newTable[i] = e;
//将元素放在数组上
13
e = next;
//访问下一个Entry链上的元素
14
}
while
(e !=
null
);
15
}
16
}
17
}
|
newTable[i]的引用赋给了e.next,也就是使用了单链表的头插入方式,同一位置上新元素总会被放在链表的头部位置;这样先放在一个索引上的元素终会被放到Entry链的尾部(若是发生了hash冲突的话),这一点和Jdk1.8有区别,下文详解。在旧数组中同一条Entry链上的元素,经过从新计算索引位置后,有可能被放到了新数组的不一样位置上。
下面举个例子说明下扩容过程。假设了咱们的hash算法就是简单的用key mod 一下表的大小(也就是数组的长度)。其中的哈希桶数组table的size=2, 因此key = 三、七、5,put顺序依次为 五、七、3。在mod 2之后都冲突在table[1]这里了。这里假设负载因子 loadFactor=1,即当键值对的实际大小size 大于 table的实际大小时进行扩容。接下来的三个步骤是哈希桶数组 resize成4,而后全部的Node从新rehash的过程。
下面咱们讲解下JDK1.8作了哪些优化。通过观测能够发现,咱们使用的是2次幂的扩展(指长度扩为原来2倍),因此,元素的位置要么是在原位置,要么是在原位置再移动2次幂的位置。看下图能够明白这句话的意思,n为table的长度,图(a)表示扩容前的key1和key2两种key肯定索引位置的示例,图(b)表示扩容后key1和key2两种key肯定索引位置的示例,其中hash1是key1对应的哈希与高位运算结果。
元素在从新计算hash以后,由于n变为2倍,那么n-1的mask范围在高位多1bit(红色),所以新的index就会发生这样的变化:
所以,咱们在扩充HashMap的时候,不须要像JDK1.7的实现那样从新计算hash,只须要看看原来的hash值新增的那个bit是1仍是0就行了,是0的话索引没变,是1的话索引变成“原索引+oldCap”,能够看看下图为16扩充为32的resize示意图:
这个设计确实很是的巧妙,既省去了从新计算hash值的时间,并且同时,因为新增的1bit是0仍是1能够认为是随机的,所以resize的过程,均匀的把以前的冲突的节点分散到新的bucket了。这一块就是JDK1.8新增的优化点。有一点注意区别,JDK1.7中rehash的时候,旧链表迁移新链表的时候,若是在新表的数组索引位置相同,则链表元素会倒置,可是从上图能够看出,JDK1.8不会倒置。有兴趣的同窗能够研究下JDK1.8的resize源码,写的很赞,以下:
1
final
Node<K,V>[] resize() {
2
Node<K,V>[] oldTab = table;
3
int
oldCap = (oldTab ==
null
) ?
0
: oldTab.length;
4
int
oldThr = threshold;
5
int
newCap, newThr =
0
;
6
if
(oldCap >
0
) {
7
// 超过最大值就再也不扩充了,就只好随你碰撞去吧
8
if
(oldCap >= MAXIMUM_CAPACITY) {
9
threshold = Integer.MAX_VALUE;
10
return
oldTab;
11
}
12
// 没超过最大值,就扩充为原来的2倍
13
else
if
((newCap = oldCap <<
1
) < MAXIMUM_CAPACITY &&
14
oldCap >= DEFAULT_INITIAL_CAPACITY)
15
newThr = oldThr <<
1
;
// double threshold
16
}
17
else
if
(oldThr >
0
)
// initial capacity was placed in threshold
18
newCap = oldThr;
19
else
{
// zero initial threshold signifies using defaults
20
newCap = DEFAULT_INITIAL_CAPACITY;
21
newThr = (
int
)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
22
}
23
// 计算新的resize上限
24
if
(newThr ==
0
) {
25
26
float
ft = (
float
)newCap * loadFactor;
27
newThr = (newCap < MAXIMUM_CAPACITY && ft < (
float
)MAXIMUM_CAPACITY ?
28
(
int
)ft : Integer.MAX_VALUE);
29
}
30
threshold = newThr;
31
@SuppressWarnings
({
"rawtypes"
,
"unchecked"
})
32
Node<K,V>[] newTab = (Node<K,V>[])
new
Node[newCap];
33
table = newTab;
34
if
(oldTab !=
null
) {
35
// 把每一个bucket都移动到新的buckets中
36
for
(
int
j =
0
; j < oldCap; ++j) {
37
Node<K,V> e;
38
if
((e = oldTab[j]) !=
null
) {
39
oldTab[j] =
null
;
40
if
(e.next ==
null
)
41
newTab[e.hash & (newCap -
1
)] = e;
42
else
if
(e
instanceof
TreeNode)
43
((TreeNode<K,V>)e).split(
this
, newTab, j, oldCap);
44
else
{
// 链表优化重hash的代码块
45
Node<K,V> loHead =
null
, loTail =
null
;
46
Node<K,V> hiHead =
null
, hiTail =
null
;
47
Node<K,V> next;
48
do
{
49
next = e.next;
50
// 原索引
51
if
((e.hash & oldCap) ==
0
) {
52
if
(loTail ==
null
)
53
loHead = e;
54
else
55
loTail.next = e;
56
loTail = e;
57
}
58
// 原索引+oldCap
59
else
{
60
if
(hiTail ==
null
)
61
hiHead = e;
62
else
63
hiTail.next = e;
64
hiTail = e;
65
}
66
}
while
((e = next) !=
null
);
67
// 原索引放到bucket里
68
if
(loTail !=
null
) {
69
loTail.next =
null
;
70
newTab[j] = loHead;
71
}
72
// 原索引+oldCap放到bucket里
73
if
(hiTail !=
null
) {
74
hiTail.next =
null
;
75
newTab[j + oldCap] = hiHead;
76
}
77
}
78
}
79
}
80
}
81
return
newTab;
82
}
|
在多线程使用场景中,应该尽可能避免使用线程不安全的HashMap,而使用线程安全的ConcurrentHashMap。那么为何说HashMap是线程不安全的,下面举例子说明在并发的多线程使用场景中使用HashMap可能形成死循环。代码例子以下(便于理解,仍然使用JDK1.7的环境):
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
|
public
class
HashMapInfiniteLoop {
private
static
HashMap<Integer,String> map =
new
HashMap<Integer,String>(
2
,
0
.75f);
public
static
void
main(String[] args) {
map.put(
5
,
"C"
);
new
Thread(
"Thread1"
) {
public
void
run() {
map.put(
7
,
"B"
);
System.out.println(map);
};
}.start();
new
Thread(
"Thread2"
) {
public
void
run() {
map.put(
3
, "A);
System.out.println(map);
};
}.start();
}
}
|
其中,map初始化为一个长度为2的数组,loadFactor=0.75,threshold=2*0.75=1,也就是说当put第二个key的时候,map就须要进行resize。
经过设置断点让线程1和线程2同时debug到transfer方法(3.3小节代码块)的首行。注意此时两个线程已经成功添加数据。放开thread1的断点至transfer方法的“Entry next = e.next;” 这一行;而后放开线程2的的断点,让线程2进行resize。结果以下图。
注意,Thread1的 e 指向了key(3),而next指向了key(7),其在线程二rehash后,指向了线程二重组后的链表。
线程一被调度回来执行,先是执行 newTalbe[i] = e, 而后是e = next,致使了e指向了key(7),而下一次循环的next = e.next致使了next指向了key(3)。
e.next = newTable[i] 致使 key(3).next 指向了 key(7)。注意:此时的key(7).next 已经指向了key(3), 环形链表就这样出现了。
因而,当咱们用线程一调用map.get(11)时,悲剧就出现了——Infinite Loop。
HashMap中,若是key通过hash算法得出的数组索引位置所有不相同,即Hash算法很是好,那样的话,getKey方法的时间复杂度就是O(1),若是Hash算法技术的结果碰撞很是多,假如Hash算极其差,全部的Hash算法结果得出的索引位置同样,那样全部的键值对都集中到一个桶中,或者在一个链表中,或者在一个红黑树中,时间复杂度分别为O(n)和O(lgn)。 鉴于JDK1.8作了多方面的优化,整体性能优于JDK1.7,下面咱们从两个方面用例子证实这一点。
为了便于测试,咱们先写一个类Key,以下:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
|
class
Key
implements
Comparable<Key> {
private
final
int
value;
Key(
int
value) {
this
.value = value;
}
@Override
public
int
compareTo(Key o) {
return
Integer.compare(
this
.value, o.value);
}
@Override
public
boolean
equals(Object o) {
if
(
this
== o)
return
true
;
if
(o ==
null
|| getClass() != o.getClass())
return
false
;
Key key = (Key) o;
return
value == key.value;
}
@Override
public
int
hashCode() {
return
value;
}
}
|
这个类复写了equals方法,而且提供了至关好的hashCode函数,任何一个值的hashCode都不会相同,由于直接使用value当作hashcode。为了不频繁的GC,我将不变的Key实例缓存了起来,而不是一遍一遍的建立它们。代码以下:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
|
public
class
Keys {
public
static
final
int
MAX_KEY = 10_000_000;
private
static
final
Key[] KEYS_CACHE =
new
Key[MAX_KEY];
static
{
for
(
int
i =
0
; i < MAX_KEY; ++i) {
KEYS_CACHE[i] =
new
Key(i);
}
}
public
static
Key of(
int
value) {
return
KEYS_CACHE[value];
}
}
|
如今开始咱们的试验,测试须要作的仅仅是,建立不一样size的HashMap(一、十、100、……10000000),屏蔽了扩容的状况,代码以下:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
|
static
void
test(
int
mapSize) {
HashMap<Key, Integer> map =
new
HashMap<Key,Integer>(mapSize);
for
(
int
i =
0
; i < mapSize; ++i) {
map.put(Keys.of(i), i);
}
long
beginTime = System.nanoTime();
//获取纳秒
for
(
int
i =
0
; i < mapSize; i++) {
map.get(Keys.of(i));
}
long
endTime = System.nanoTime();
System.out.println(endTime - beginTime);
}
public
static
void
main(String[] args) {
for
(
int
i=
10
;i<=
1000
0000
;i*=
10
){
test(i);
}
}
|
在测试中会查找不一样的值,而后度量花费的时间,为了计算getKey的平均时间,咱们遍历全部的get方法,计算总的时间,除以key的数量,计算一个平均值,主要用来比较,绝对值可能会受不少环境因素的影响。结果以下:
经过观测测试结果可知,JDK1.8的性能要高于JDK1.7 15%以上,在某些size的区域上,甚至高于100%。因为Hash算法较均匀,JDK1.8引入的红黑树效果不明显,下面咱们看看Hash不均匀的的状况。
假设咱们又一个很是差的Key,它们全部的实例都返回相同的hashCode值。这是使用HashMap最坏的状况。代码修改以下:
1
2
3
4
5
6
7
8
9
|
class
Key
implements
Comparable<Key> {
//...
@Override
public
int
hashCode() {
return
1
;
}
}
|
仍然执行main方法,得出的结果以下表所示:
从表中结果中可知,随着size的变大,JDK1.7的花费时间是增加的趋势,而JDK1.8是明显的下降趋势,而且呈现对数增加稳定。当一个链表太长的时候,HashMap会动态的将它替换成一个红黑树,这话的话会将时间复杂度从O(n)降为O(logn)。hash算法均匀和不均匀所花费的时间明显也不相同,这两种状况的相对比较,能够说明一个好的hash算法的重要性。
测试环境:处理器为2.2 GHz Intel Core i7,内存为16 GB 1600 MHz DDR3,SSD硬盘,使用默认的JVM参数,运行在64位的OS X 10.10.1上。
(1) 扩容是一个特别耗性能的操做,因此当程序员在使用HashMap的时候,估算map的大小,初始化的时候给一个大体的数值,避免map进行频繁的扩容。
(2) 负载因子是能够修改的,也能够大于1,可是建议不要轻易修改,除非状况很是特殊。
(3) HashMap是线程不安全的,不要在并发的环境中同时操做HashMap,建议使用ConcurrentHashMap。
(4) JDK1.8引入红黑树大程度优化了HashMap的性能。
(5) 还没升级JDK1.8的,如今开始升级吧。HashMap的性能提高仅仅是JDK1.8的冰山一角。