github:kmeans代码实现1、kmeans代码实现2(包含二分k-means)
本文算法均使用python3实现html
1 聚类算法
对于"监督学习"(supervised learning),其训练样本是带有标记信息的,而且监督学习的目的是:对带有标记的数据集进行模型学习,从而便于对新的样本进行分类。而在“无监督学习”(unsupervised learning)中,训练样本的标记信息是未知的,目标是经过对无标记训练样本的学习来揭示数据的内在性质及规律,为进一步的数据分析提供基础。对于无监督学习,应用最广的即是"聚类"(clustering)。
“聚类算法”试图将数据集中的样本划分为若干个一般是不相交的子集,每一个子集称为一个“簇”(cluster),经过这样的划分,每一个簇可能对应于一些潜在的概念或类别。
咱们能够经过下面这个图来理解:
python

上图是未作标记的样本集,经过他们的分布,咱们很容易对上图中的样本作出如下几种划分。
当须要将其划分为两个簇时,即 时:


当须要将其划分为四个簇时,即 时:

那么计算机是如何进行这样的划分的呢?这就须要 聚类算法来进行实现了。本文主要针对聚类算法中的一种—— kmeans算法进行介绍。
2 kmeans算法
kmeans算法又名k均值算法。其算法思想大体为:先从样本集中随机选取
个样本做为簇中心,并计算全部样本与这
个“簇中心”的距离,对于每个样本,将其划分到与其距离最近的“簇中心”所在的簇中,对于新的簇计算各个簇的新的“簇中心”。
根据以上描述,咱们大体能够猜想到实现kmeans算法的主要三点:
(1)簇个数
的选择
(2)各个样本点到“簇中心”的距离
(3)根据新划分的簇,更新“簇中心”git
2.1 kmeans算法要点
(1)
值的选择
的选择通常是按照实际需求进行决定,或在实现算法时直接给定
值。
(2) 距离的度量
给定样本
。距离的度量方法主要分为如下几种:
(2.1)有序属性距离度量(离散属性
或连续属性):
闵可夫斯基距离(Minkowski distance): github
欧氏距离(Euclidean distance),即当 时的闵可夫斯基距离:
曼哈顿距离(Manhattan distance),即当 时的闵可夫斯基距离:
(2.2)无序属性距离度量(好比{飞机,火车,轮船}):
VDM(Value Difference Metric):
其中 表示在属性 上取值为 的样本数, 表示在第 个样本簇中属性 上取值为 的样本数, 表示在属性 上两个离散值 的 距离 。
(2.3)混合属性距离度量,即为有序与无序的结合:
其中含有 个有序属性,与 个无序属性。
本文数据集为连续属性,所以代码中主要以欧式距离进行距离的度量计算。
(3) 更新“簇中心”
对于划分好的各个簇,计算各个簇中的样本点均值,将其均值做为新的簇中心。
2.2 kmeans算法过程
输入:训练数据集
,聚类簇数
;
过程:函数
.
1:从
中随机选择
个样本做为初始“簇中心”向量:
:
2:repeat
3: 令
4: for
do
5: 计算样本
与各“簇中心”向量
的欧式距离
6: 根据距离最近的“簇中心”向量肯定
的簇标记:
7: 将样本
划入相应的簇:
;
8: end for
9: for
do
10: 计算新“簇中心”向量:
;
11: if
then
12: 将当前“簇中心”向量
更新为
13: else
14: 保持当前均值向量不变
15: end if
16: end for
17: else
18:until 当前“簇中心”向量均未更新
输出:簇划分
算法
为避免运行时间过长,一般设置一个最大运行轮数或最小调整幅度阈值,若达到最大轮数或调整幅度小于阈值,则中止运行。
过程以下图:
markdown

2.2 kmeans算法分析
kmeans算法因为初始“簇中心”点是随机选取的,所以最终求得的簇的划分与随机选取的“簇中心”有关,也就是说,可能会形成多种 个簇的划分状况。这是由于kmeans算法收敛到了局部最小值,而非全局最小值。机器学习
3 二分k-means算法
基于kmeans算法容易使得结果为局部最小值而非全局最小值这一缺陷,对算法加以改进。使用一种用于度量聚类效果的指标SSE(Sum of Squared Error),即对于第
个簇,其SSE为各个样本点到“簇中心”点的距离的平方的和,SSE值越小表示数据点越接近于它们的“簇中心”点,聚类效果也就越好。以此做为划分簇的标准。
算法思想是:先将整个样本集做为一个簇,该“簇中心”点向量为全部样本点的均值,计算此时的SSE。若此时簇个数小于
,对每个簇进行kmeans聚类(
) ,计算将每个簇一分为二后的总偏差SSE,选择SSE最小的那个簇进行划分操做。ide
3.1 kmeans算法过程
输入:训练数据集
,聚类簇数
;
过程:函数
.
1:将全部点看作一个簇,计算此时“簇中心”向量:
2:while
:
3: for
do
4: 将第
个簇使用 kmeans算法进行划分,其中
5: 计算划分后的偏差平方和
5: 比较
种划分的SSE值,选择SSE值最小的那种簇划分进行划分
5: 更新簇的分配结果
5: 添加新的“簇中心”
18:until 当前“簇中心”个数达到
输出:簇划分
函数
3.2 二分k-means算法分析
二分k-means算法再也不随机选取簇中心,而是从一个簇出发,根据聚类效果度量指标SSE来判断下一步应该对哪个簇进行划分,所以该方法不会收敛到局部最小值,而是收敛到全局最小值。post
引用及参考:
[1]《机器学习》周志华著
[2]《机器学习实战》Peter Harrington著
[3]https://blog.csdn.net/google19890102/article/details/26149927
写在最后:本文参考以上资料进行整合与总结,属于原创,文章中可能出现理解不当的地方,如有所看法或异议可在下方评论,谢谢!
若需转载请注明:http://www.javashuo.com/article/p-kacaayof-ch.html