Lucene实例教程

Lucene是apache组织的一个用java实现全文搜索引擎的开源项目。 其功能很是的强大,api也很简单。总得来讲用Lucene来进行创建 和搜索和操做数据库是差很少的(有点像),Document能够看做是 数据库的一行记录,Field能够看做是数据库的字段。用lucene实 现搜索引擎就像用JDBC实现链接数据库同样简单。java

Lucene2.0,它与之前普遍应用和介绍的Lucene 1.4.3并不兼容。 Lucene2.0的下载地址是http://apache.justdn.org/lucene/java/程序员


例子一 :

一、在windows系统下的的C盘,建一个名叫s的文件夹,在该文件夹里面随便建三个txt文件,随便起名啦,就叫"1.txt","2.txt"和"3.txt"啦 
其中1.txt的内容以下:数据库

中华人民共和国   
全国人民   
2006年  apache

而"2.txt"和"3.txt"的内容也能够随便写几写,这里懒写,就复制一个和1.txt文件的内容同样吧

二、下载lucene包,放在classpath路径中 
创建索引:windows

package lighter.javaeye.com;   
  
import java.io.BufferedReader;   
import  java.io.File;   
import java.io.FileInputStream;   
import  java.io.IOException;   
import java.io.InputStreamReader;   
import  java.util.Date;   
  
import  org.apache.lucene.analysis.Analyzer;   
import org.apache.lucene.analysis.standard.StandardAnalyzer;   
import org.apache.lucene.document.Document;   
import org.apache.lucene.document.Field;   
import org.apache.lucene.index.IndexWriter;   
  
/** */ /**   
 * author lighter date 2006-8-7  
  */   
public   class TextFileIndexer  {   
    public   static   void  main(String[] args)  throws Exception  {   
        /**/ /*  指明要索引文件夹的位置,这里是C盘的S文件夹下 */   
        File fileDir =   new  File( " c:\\s " );   
  
        /**/ /*  这里放索引文件的位置  */   
        File indexDir =   new  File( " c:\\index " );   
        Analyzer luceneAnalyzer =   new  StandardAnalyzer();   
        IndexWriter indexWriter =   new  IndexWriter(indexDir, luceneAnalyzer,   
                true );   
        File[] textFiles =  fileDir.listFiles();   
        long  startTime  =   new Date().getTime();   
           
        // 增长document到索引去    
        for  ( int  i  =   0 ; i  < textFiles.length; i ++ )  {   
            if  (textFiles[i].isFile()   
                    &&  textFiles[i].getName().endsWith( " .txt " ))  {   
                System.out.println(" File  "   + textFiles[i].getCanonicalPath()   
                        +   " 正在被索引. " );   
                String temp =  FileReaderAll(textFiles[i].getCanonicalPath(),   
                        " GBK " );   
                System.out.println(temp);   
                Document document =   new  Document();   
                Field FieldPath =   new  Field( " path ", textFiles[i].getPath(),   
                        Field.Store.YES, Field.Index.NO);   
                Field FieldBody =   new  Field( " body ", temp, Field.Store.YES,   
                        Field.Index.TOKENIZED,   
                        Field.TermVector.WITH_POSITIONS_OFFSETS);   
                document.add(FieldPath);   
                document.add(FieldBody);   
                indexWriter.addDocument(document);   
            }   
        }   
        // optimize()方法是对索引进行优化    
        indexWriter.optimize();   
        indexWriter.close();   
           
        // 测试一下索引的时间    
        long  endTime  =   new  Date().getTime();   
        System.out   
                .println(" 这花费了"   
                        +  (endTime  -  startTime)   
                        +   "  毫秒来把文档增长到索引里面去! "   
                        +  fileDir.getPath());   
    }    
  
     public   static String FileReaderAll(String FileName, String charset)   
            throws  IOException  {   
        BufferedReader reader =   new  BufferedReader( new InputStreamReader(   
                new  FileInputStream(FileName), charset));   
        String line =   new  String();   
        String temp =   new  String();   
           
        while  ((line  =  reader.readLine())  !=   null)  {   
            temp +=  line;   
        }   
        reader.close();   
        return  temp;   
    }    
}  api

索引的结果:多线程

File C:\s\ 1 .txt正在被索引.   
中华人民共和国全国人民2006年   
File C:\s\ 2 .txt正在被索引.   
中华人民共和国全国人民2006年   
File C:\s\ 3 .txt正在被索引.   
中华人民共和国全国人民2006年   
这花费了297 毫秒来把文档增长到索引里面去 ! c:\s  函数


三、创建了索引以后,查询啦....工具

package  lighter.javaeye.com;   
  
import java.io.IOException;   
  
import org.apache.lucene.analysis.Analyzer;   
import org.apache.lucene.analysis.standard.StandardAnalyzer;   
import  org.apache.lucene.queryParser.ParseException;   
import org.apache.lucene.queryParser.QueryParser;   
import org.apache.lucene.search.Hits;   
import org.apache.lucene.search.IndexSearcher;   
import org.apache.lucene.search.Query;   
  
public   class TestQuery  {   
    public   static   void  main(String[] args)  throws IOException, ParseException  {   
        Hits hits =   null ;   
        String queryString =   " 中华 ";   
        Query query =   null ;   
        IndexSearcher searcher =   new  IndexSearcher( " c:\\index " );   
  
        Analyzer analyzer =   new  StandardAnalyzer();   
        try   {   
            QueryParser qp =   new  QueryParser( " body ", analyzer);   
            query =  qp.parse(queryString);   
        }  catch  (ParseException e)  {   
        }   
        if  (searcher  !=   null )  {   
            hits =  searcher.search(query);   
            if  (hits.length()  >   0 )  {   
                System.out.println(" 找到: "  +  hits.length()  +   "  个结果! " );   
            }   
        }   
    }  
  
}   测试

其运行结果:

找到: 3  个结果!

 

Lucene 其实很简单的,它最主要就是作两件事:创建索引和进行搜索 
来看一些在lucene中使用的术语,这里并不打算做详细的介绍,只是点一下而已----由于这一个世界有一种好东西,叫搜索。

IndexWriter:lucene中最重要的的类之一,它主要是用来将文档加入索引,同时控制索引过程当中的一些参数使用。

Analyzer:分析器,主要用于分析搜索引擎遇到的各类文本。经常使用的有StandardAnalyzer分析器,StopAnalyzer分析器,WhitespaceAnalyzer分析器等。

Directory:索引存放的位置;lucene提供了两种索引存放的位置,一种是磁盘,一种是内存。通常状况将索引放在磁盘上;相应地lucene提供了FSDirectory和RAMDirectory两个类。

Document:文档;Document至关于一个要进行索引的单元,任何能够想要被索引的文件都必须转化为Document对象才能进行索引。

Field:字段。

IndexSearcher:是lucene中最基本的检索工具,全部的检索都会用到IndexSearcher工具;

Query:查询,lucene中支持模糊查询,语义查询,短语查询,组合查询等等,若有TermQuery,BooleanQuery,RangeQuery,WildcardQuery等一些类。

QueryParser: 是一个解析用户输入的工具,能够经过扫描用户输入的字符串,生成Query对象。

Hits:在搜索完成以后,须要把搜索结果返回并显示给用户,只有这样才算是完成搜索的目的。在lucene中,搜索的结果的集合是用Hits类的实例来表示的。

上面做了一大堆名词解释,下面就看几个简单的实例吧: 
一、简单的的StandardAnalyzer测试例子

 

package  lighter.javaeye.com;   
  
import java.io.IOException;   
import java.io.StringReader;   
  
import org.apache.lucene.analysis.Analyzer;   
import  org.apache.lucene.analysis.Token;   
import org.apache.lucene.analysis.TokenStream;   
import org.apache.lucene.analysis.standard.StandardAnalyzer;   
  
public   class StandardAnalyzerTest    
{   
     // 构造函数,    
     public StandardAnalyzerTest()   
    {   
    }    
     public   static  void  main(String[] args)    
    {   
        // 生成一个StandardAnalyzer对象    
        Analyzer aAnalyzer =   new  StandardAnalyzer();   
        // 测试字符串   
        StringReader sr =   new  StringReader( "lighter javaeye com is the are on ");   
        // 生成TokenStream对象    
        TokenStream ts =  aAnalyzer.tokenStream( " name ", sr);    
        try   {   
            int  i = 0 ;   
            Token t =  ts.next();   
            while (t != null )   
            {   
                // 辅助输出时显示行号   
                i++ ;   
                // 输出处理后的字符   
                System.out.println(" 第 " + i + " 行: " + t.termText());   
                // 取得下一个字符   
                t= ts.next();   
            }   
        }  catch  (IOException e)  {   
            e.printStackTrace();   
        }   
    }    
}    

显示结果:

第1行:lighter 
第2行:javaeye 
第3行:com

提示一下: 
StandardAnalyzer是lucene中内置的"标准分析器",能够作以下功能: 
一、对原有句子按照空格进行了分词 
二、全部的大写字母均可以能转换为小写的字母 
三、能够去掉一些没有用处的单词,例如"is","the","are"等单词,也删除了全部的标点 
查看一下结果与"newStringReader("lighter javaeye com is the are on")"做一个比较就清楚明了。 
这里不对其API进行解释了,具体见lucene的官方文档。须要注意一点,这里的代码使用的是lucene2的API,与1.43版有一些明显的差异。

二、看另外一个实例,简单地创建索引,进行搜索

package lighter.javaeye.com;   
import org.apache.lucene.analysis.standard.StandardAnalyzer;   
import org.apache.lucene.document.Document;   
import org.apache.lucene.document.Field;   
import  org.apache.lucene.index.IndexWriter;   
import org.apache.lucene.queryParser.QueryParser;   
import org.apache.lucene.search.Hits;   
import org.apache.lucene.search.IndexSearcher;   
import org.apache.lucene.search.Query;   
import org.apache.lucene.store.FSDirectory;   
  
public   class FSDirectoryTest  {   
  
     // 创建索引的路径    
     public   static  final  String path  =   " c:\\index2 ";   
  
    public   static   void  main(String[] args)  throws Exception  {   
        Document doc1 =   new  Document();   
        doc1.add( new  Field( " name " ,  "lighter javaeye com " ,Field.Store.YES,Field.Index.TOKENIZED));   
  
        Document doc2 =   new  Document();   
        doc2.add(new  Field( " name " ,  " lighter blog ",Field.Store.YES,Field.Index.TOKENIZED));   
  
        IndexWriter writer =   new  IndexWriter(FSDirectory.getDirectory(path,  true),  new  StandardAnalyzer(),  true );   
        writer.setMaxFieldLength(3 );   
        writer.addDocument(doc1);   
        writer.setMaxFieldLength(3 );   
        writer.addDocument(doc2);   
        writer.close();   
  
        IndexSearcher searcher =   new  IndexSearcher(path);   
        Hits hits =   null ;   
        Query query =   null ;   
        QueryParser qp =   new  QueryParser( " name " , new StandardAnalyzer());   
           
        query =  qp.parse( " lighter " );   
        hits =  searcher.search(query);   
        System.out.println(" 查找\ " lighter\ "  共 "   +  hits.length()  +  " 个结果 " );   
  
        query =  qp.parse( " javaeye " );   
        hits =  searcher.search(query);   
        System.out.println(" 查找\ " javaeye\ "  共 "   +  hits.length()  +  " 个结果 " );   
  
    }    
  
}   

运行结果:

查找 " lighter "  共2个结果   
查找 " javaeye "  共1个结果 


到如今咱们已经能够用lucene创建索引了
下面介绍一下几个功能来完善一下:
1.索引格式

其实索引目录有两种格式,

一种是除配置文件外,每个Document独立成为一个文件(这种搜索起来会影响速度)。

另外一种是所有的Document成一个文件,这样属于复合模式就快了。

2.索引文件可放的位置:

索引能够存放在两个地方1.硬盘,2.内存
放在硬盘上能够用FSDirectory(),放在内存的用RAMDirectory()不过一关机就没了

FSDirectory.getDirectory(File file, boolean  create)
FSDirectory.getDirectory(String path, boolean  create)

两个工厂方法返回目录
New RAMDirectory()就直接能够
再和

IndexWriter(Directory d, Analyzer a, boolean  create)

一配合就好了
如:

IndexWrtier indexWriter  =  new  IndexWriter(FSDirectory.getDirectory(“c:\\index”, true ), new StandardAnlyazer(), true );
IndexWrtier indexWriter  =  new  IndexWriter( new  RAMDirectory(), new  StandardAnlyazer(),true );

3.索引的合并
这个可用

IndexWriter.addIndexes(Directory[] dirs)

将目录加进去
来看个例子:

public   void  UniteIndex() throws  IOException
    {
        IndexWriter writerDisk =   new  IndexWriter(FSDirectory.getDirectory( " c:\\indexDisk" ,  true ), new  StandardAnalyzer(), true );
        Document docDisk =   new  Document();
        docDisk.add(new  Field( " name " , " 程序员之家 " ,Field.Store.YES,Field.Index.TOKENIZED));
        writerDisk.addDocument(docDisk);
        RAMDirectory ramDir =   new  RAMDirectory();
        IndexWriter writerRam =   new  IndexWriter(ramDir, new  StandardAnalyzer(), true );
        Document docRam =   new  Document();
        docRam.add(new  Field( " name " , " 程序员杂志 " ,Field.Store.YES,Field.Index.TOKENIZED));
        writerRam.addDocument(docRam);
        writerRam.close();// 这个方法很是重要,是必须调用的 
        writerDisk.addIndexes(new  Directory[] {ramDir} );
        writerDisk.close();
    } 
     public   void UniteSearch()  throws  ParseException, IOException
    {
        QueryParser queryParser =   new  QueryParser( " name " , new StandardAnalyzer());
        Query query =  queryParser.parse( " 程序员 " );
        IndexSearcher indexSearcher = new  IndexSearcher( " c:\\indexDisk " );
        Hits hits =  indexSearcher.search(query);
        System.out.println(" 找到了 " + hits.length() + " 结果 " );
        for ( int  i = 0 ;i
        {
            Document doc =  hits.doc(i);
            System.out.println(doc.get(" name " ));
        }
}


这个例子是将内存中的索引合并到硬盘上来.
注意:合并的时候必定要将被合并的那一方的IndexWriter的close()方法调用。

4.对索引的其它操做:
IndexReader类是用来操做索引的,它有对Document,Field的删除等操做。
下面一部分的内容是:全文的搜索
全文的搜索主要是用:IndexSearcher,Query,Hits,Document(都是Query的子类),有的时候用QueryParser
主要步骤:

1 . new  QueryParser(Field字段, new  分析器)
2 .Query query  = QueryParser.parser(“要查询的字串”);这个地方咱们能够用反射api看一下query到底是什么类型
3 . new  IndexSearcher(索引目录).search(query);返回Hits
4 .用Hits.doc(n);能够遍历出Document
5 .用Document可获得Field的具体信息了。

其实1 ,2两步就是为了弄出个Query 实例,到底是什么类型的看分析器了。

拿之前的例子来讲吧

QueryParser queryParser  =  new  QueryParser( " name " , new  StandardAnalyzer());
        Query query =  queryParser.parse( " 程序员 " );
/**/ /* 这里返回的就是org.apache.lucene.search.PhraseQuery */ 
        IndexSearcher indexSearcher = new  IndexSearcher( " c:\\indexDisk " );
        Hits hits =  indexSearcher.search(query);


不论是什么类型,无非返回的就是Query的子类,咱们彻底能够不用这两步直接new个Query的子类的实例就ok了,不过通常仍是用这两步由于它返回的是PhraseQuery这个是很是强大的query子类它能够进行多字搜索用QueryParser能够设置各个关键字之间的关系这个是最经常使用的了。
IndexSearcher:
其实IndexSearcher它内部自带了一个IndexReader用来读取索引的,IndexSearcher有个close()方法,这个方法不是用来关闭IndexSearche的是用来关闭自带的IndexReader。

QueryParser呢能够用parser.setOperator()来设置各个关键字之间的关系(与仍是或)它能够自动经过空格从字串里面将关键字分离出来。
注意:用QueryParser搜索的时候分析器必定的和创建索引时候用的分析器是同样的。
Query:
能够看一个lucene2.0的帮助文档有不少的子类:
BooleanQuery, ConstantScoreQuery, ConstantScoreRangeQuery, DisjunctionMaxQuery,FilteredQuery, MatchAllDocsQuery, MultiPhraseQuery, MultiTermQuery,PhraseQuery, PrefixQuery, RangeQuery, SpanQuery, TermQuery
各自有用法看一下文档就能知道它们的用法了
下面一部分讲一下lucene的分析器:
分析器是由分词器和过滤器组成的,拿英文来讲吧分词器就是经过空格把单词分开,过滤器就是把the,to,of等词去掉不被搜索和索引。
咱们最经常使用的是StandardAnalyzer()它是lucene的标准分析器它集成了内部的许多的分析器。
最后一部分了:lucene的高级搜索了
1.排序
Lucene有内置的排序用IndexSearcher.search(query,sort)可是功能并不理想。咱们须要本身实现自定义的排序。
这样的话得实现两个接口: ScoreDocComparator,SortComparatorSource
用IndexSearcher.search(query,newSort(new SortField(String Field,SortComparatorSource)));
就看个例子吧:
这是一个创建索引的例子:

public   void  IndexSort() throws  IOException
{
        IndexWriter writer =   new  IndexWriter( " C:\\indexStore " , new StandardAnalyzer(), true );
        Document doc =   new  Document()
        doc.add(new  Field( " sort " , " 1 ",Field.Store.YES,Field.Index.TOKENIZED));
        writer.addDocument(doc);
        doc =   new  Document();
        doc.add(new  Field( " sort " , " 4 ",Field.Store.YES,Field.Index.TOKENIZED));
        writer.addDocument(doc);
        doc =   new  Document();
        doc.add(new  Field( " sort " , " 3 ",Field.Store.YES,Field.Index.TOKENIZED));
        writer.addDocument(doc);
        doc =   new  Document();
        doc.add(new  Field( " sort " , " 5 ",Field.Store.YES,Field.Index.TOKENIZED));
        writer.addDocument(doc);
        doc =   new  Document();
        doc.add(new  Field( " sort " , " 9 ",Field.Store.YES,Field.Index.TOKENIZED));
        writer.addDocument(doc);
        doc =   new  Document();
        doc.add(new  Field( " sort " , " 6 " ,Field.Store.YES,Field.Index.TOKENIZED));
        writer.addDocument(doc);
        doc =   new  Document();
        doc.add(new  Field( " sort " , " 7 ",Field.Store.YES,Field.Index.TOKENIZED));
        writer.addDocument(doc);
        writer.close();


下面是搜索的例子:
[code]
public void SearchSort1() throws IOException, ParseException
{
        IndexSearcher indexSearcher = newIndexSearcher("C:\\indexStore");
        QueryParser queryParser = newQueryParser("sort",new StandardAnalyzer());
        Query query =queryParser.parse("4");
       
        Hits hits =indexSearcher.search(query);
        System.out.println("有"+hits.length()+"个结果");
        Document doc = hits.doc(0);
       System.out.println(doc.get("sort"));
}
public void SearchSort2() throws IOException, ParseException
{
        IndexSearcher indexSearcher = newIndexSearcher("C:\\indexStore");
        Query query = new RangeQuery(newTerm("sort","1"),newTerm("sort","9"),true);//这个地方前面没有提到,它是用于范围的Query能够看一下帮助文档.
        Hits hits =indexSearcher.search(query,new Sort(new SortField("sort",newMySortComparatorSource())));
        System.out.println("有"+hits.length()+"个结果");
        for(int i=0;i
        {
            Document doc= hits.doc(i);
           System.out.println(doc.get("sort"));
        }
}
public class MyScoreDocComparator implements ScoreDocComparator
{
    private Integer[]sort;
    public MyScoreDocComparator(String s,IndexReader reader,String fieldname) throws IOException
    {
        sort = new Integer[reader.maxDoc()];
        for(int i = 0;i
        {
            Document doc=reader.document(i);
            sort[i]=newInteger(doc.get("sort"));
        }
    }
    public int compare(ScoreDoc i, ScoreDoc j)
    {
        if(sort[i.doc]>sort[j.doc])
            return 1;
        if(sort[i.doc]
            return -1;
        return 0;
    }
    public int sortType()
    {
        return SortField.INT;
    }
    public Comparable sortValue(ScoreDoc i)
    {
        // TODO 自动生成方法存根
        return new Integer(sort[i.doc]);
    }
}
public class MySortComparatorSource implements SortComparatorSource
{
    private static final long serialVersionUID =-9189690812107968361L;
    public ScoreDocComparator newComparator(IndexReader reader,String fieldname)
            throwsIOException
    {
       if(fieldname.equals("sort"))
            return newMyScoreDocComparator("sort",reader,fieldname);
        return null;
    }
}[/code]
SearchSort1()输出的结果没有排序,SearchSort2()就排序了。
2.多域搜索MultiFieldQueryParser
若是想输入关键字而不想关心是在哪一个Field里的就能够用MultiFieldQueryParser了
用它的构造函数便可后面的和一个Field同样。
MultiFieldQueryParser. parse(String[] queries, String[] fields,BooleanClause.Occur[] flags, Analyzeranalyzer)                                         ~~~~~~~~~~~~~~~~~
第三个参数比较特殊这里也是与之前lucene1.4.3不同的地方
看一个例子就知道了
String[] fields = {"filename", "contents", "description"};
 BooleanClause.Occur[] flags = {BooleanClause.Occur.SHOULD,
               BooleanClause.Occur.MUST,//在这个Field里必须出现的
               BooleanClause.Occur.MUST_NOT};//在这个Field里不能出现
 MultiFieldQueryParser.parse("query", fields, flags, analyzer);

一、lucene的索引不能太大,要否则效率会很低。大于1G的时候就必须考虑分布索引的问题

二、不建议用多线程来建索引,产生的互锁问题很麻烦。常常发现索引被lock,没法从新创建的状况

三、中文分词是个大问题,目前免费的分词效果都不好。若是有能力仍是本身实现一个分词模块,用最短路径的切分方法,网上有教材和demo源码,能够参考。

四、建增量索引的时候很耗cpu,在访问量大的时候会致使cpu的idle为0

五、默认的评分机制不太合理,须要根据本身的业务定制

 

总体来讲lucene要用好不容易,必须在上述方面扩充他的功能,才能做为一个商用的搜索引擎

相关文章
相关标签/搜索