etcd raft library设计原理和使用

早在2013年11月份,在raft论文还只能在网上下载到草稿版时,我曾经写过一篇blog对其进行简要分析。4年过去了,各类raft协议的讲解铺天盖地,raft也确实获得了普遍的应用。其中最知名的应用莫过于etcd。etcd将raft协议自己实现为一个library,位于https://github.com/coreos/etcd/tree/master/raft,而后自己做为一个应用使用它。html

本文不讲解raft协议核心内容,而是站在一个etcd raft library使用者的角度,讲解要用上这个library须要了解的东西。node

这个library使用起来相对来讲仍是有点麻烦。官方有一个使用示例在 https://github.com/coreos/etcd/tree/master/contrib/raftexample。总体来讲,这个库实现了raft协议核心的内容,好比append log的逻辑,选主逻辑,snapshot,成员变动等逻辑。须要明确的是:library没有实现消息的网络传输和接收,库只会把一些待发送的消息保存在内存中,用户自定义的网络传输层取出消息并发送出去,而且在网络接收端,须要调一个library的函数,用于将收到的消息传入library,后面会详细说明。同时,library定义了一个Storage接口,须要library的使用者自行实现。git

Storage接口以下:github

// Storage is an interface that may be implemented by the application
// to retrieve log entries from storage.
//
// If any Storage method returns an error, the raft instance will
// become inoperable and refuse to participate in elections; the
// application is responsible for cleanup and recovery in this case.
type Storage interface {
    // InitialState returns the saved HardState and ConfState information.
    InitialState() (pb.HardState, pb.ConfState, error)
    // Entries returns a slice of log entries in the range [lo,hi).
    // MaxSize limits the total size of the log entries returned, but
    // Entries returns at least one entry if any.
    Entries(lo, hi, maxSize uint64) ([]pb.Entry, error)
    // Term returns the term of entry i, which must be in the range
    // [FirstIndex()-1, LastIndex()]. The term of the entry before
    // FirstIndex is retained for matching purposes even though the
    // rest of that entry may not be available.
    Term(i uint64) (uint64, error)
    // LastIndex returns the index of the last entry in the log.
    LastIndex() (uint64, error)
    // FirstIndex returns the index of the first log entry that is
    // possibly available via Entries (older entries have been incorporated
    // into the latest Snapshot; if storage only contains the dummy entry the
    // first log entry is not available).
    FirstIndex() (uint64, error)
    // Snapshot returns the most recent snapshot.
    // If snapshot is temporarily unavailable, it should return ErrSnapshotTemporarilyUnavailable,
    // so raft state machine could know that Storage needs some time to prepare
    // snapshot and call Snapshot later.
    Snapshot() (pb.Snapshot, error)
}

这些接口在library中会被用到。熟悉raft协议的人不难理解。上面提到的官方示例https://github.com/coreos/etcd/tree/master/contrib/raftexample中使用了library自带的MemoryStorage,和etcd的wal和snap包作持久化,重启的时候从wal和snap中获取日志恢复MemoryStorage。网络

要提供这种IO/网络密集型的东西,提升吞吐最好的手段就是batch加批处理了。etcd raft library正是这么作的。并发

下面看一下为了作这事,etcd提供的核心抽象Ready结构体:app

// Ready encapsulates the entries and messages that are ready to read,
// be saved to stable storage, committed or sent to other peers.
// All fields in Ready are read-only.
type Ready struct {
    // The current volatile state of a Node.
    // SoftState will be nil if there is no update.
    // It is not required to consume or store SoftState.
    *SoftState

    // The current state of a Node to be saved to stable storage BEFORE
    // Messages are sent.
    // HardState will be equal to empty state if there is no update.
    pb.HardState

    // ReadStates can be used for node to serve linearizable read requests locally
    // when its applied index is greater than the index in ReadState.
    // Note that the readState will be returned when raft receives msgReadIndex.
    // The returned is only valid for the request that requested to read.
    ReadStates []ReadState

    // Entries specifies entries to be saved to stable storage BEFORE
    // Messages are sent.
    Entries []pb.Entry

    // Snapshot specifies the snapshot to be saved to stable storage.
    Snapshot pb.Snapshot

    // CommittedEntries specifies entries to be committed to a
    // store/state-machine. These have previously been committed to stable
    // store.
    CommittedEntries []pb.Entry

    // Messages specifies outbound messages to be sent AFTER Entries are
    // committed to stable storage.
    // If it contains a MsgSnap message, the application MUST report back to raft
    // when the snapshot has been received or has failed by calling ReportSnapshot.
    Messages []pb.Message

    // MustSync indicates whether the HardState and Entries must be synchronously
    // written to disk or if an asynchronous write is permissible.
    MustSync bool
}

能够说,这个Ready结构体封装了一批更新,这些更新包括:async

  • pb.HardState: 包含当前节点见过的最大的term,以及在这个term给谁投过票,已经当前节点知道的commit index
  • Messages: 须要广播给全部peers的消息
  • CommittedEntries:已经commit了,尚未apply到状态机的日志
  • Snapshot:须要持久化的快照

库的使用者从node结构体提供的一个ready channel中不断的pop出一个个的Ready进行处理,库使用者经过以下方法拿到Ready channel:函数

func (n *node) Ready() <-chan Ready { return n.readyc }

应用须要对Ready的处理包括:ui

  1. 将HardState, Entries, Snapshot持久化到storage。
  2. 将Messages(上文提到的msgs)非阻塞的广播给其余peers
  3. 将CommittedEntries(已经commit尚未apply)应用到状态机。
  4. 若是发现CommittedEntries中有成员变动类型的entry,调用node的ApplyConfChange()方法让node知道(这里和raft论文不同,论文中只要节点收到了成员变动日志就应用)
  5. 调用Node.Advance()告诉raft node,这批状态更新处理完了,状态已经演进了,能够给我下一批Ready让我处理。

应用经过raft.StartNode()来启动raft中的一个副本,函数内部经过启动一个goroutine运行

func (n *node) run(r *raft)

来启动服务。

应用经过调用

func (n *node) Propose(ctx context.Context, data []byte) error

来Propose一个请求给raft,被raft开始处理后返回。

增删节点经过调用

func (n *node) ProposeConfChange(ctx context.Context, cc pb.ConfChange) error

node结构体包含几个重要的channel:

// node is the canonical implementation of the Node interface
type node struct {
    propc      chan pb.Message
    recvc      chan pb.Message
    confc      chan pb.ConfChange
    confstatec chan pb.ConfState
    readyc     chan Ready
    advancec   chan struct{}
    tickc      chan struct{}
    done       chan struct{}
    stop       chan struct{}
    status     chan chan Status

    logger Logger
}
  • propc: propc是一个没有buffer的channel,应用经过Propose接口写入的请求被封装成Message被push到propc中,node的run方法从propc中pop出Message,append本身的raft log中,而且将Message放入mailbox中(raft结构体中的msgs []pb.Message),这个msgs会被封装在Ready中,被应用从readyc中取出来,而后经过应用自定义的transport发送出去。
  • recvc: 应用自定义的transport在收到Message后须要调用

    func (n *node) Step(ctx context.Context, m pb.Message) error
    来把Message放入recvc中,通过一些处理后,一样,会把须要发送的Message放入到对应peers的mailbox中。后续经过自定义transport发送出去。
  • readyc/advancec: readyc和advancec都是没有buffer的channel,node.run()内部把相关的一些状态更新打包成Ready结构体(其中一种状态就是上面提到的msgs)放入readyc中。应用从readyc中pop出Ready中,对相应的状态进行处理,处理完成后,调用

    rc.node.Advance()
    往advancec中push一个空结构体告诉raft,已经对这批Ready包含的状态进行了相应的处理,node.run()内部从advancec中获得通知后,对内部一些状态进行处理,好比把已经持久化到storage中的entries从内存(对应type unstable struct)中删除等。
  • tickc:应用按期往tickc中push空结构体,node.run()会调用tick()函数,对于leader来讲,tick()会给其余peers发心跳,对于follower来讲,会检查是否须要发起选主操做。
  • confc/confstatec:应用从Ready中拿出CommittedEntries,检查其若是含有成员变动类型的日志,则须要调用

    func (n *node) ApplyConfChange(cc pb.ConfChange) *pb.ConfState

    这个函数会push ConfChange到confc中,confc一样是个无buffer的channel,node.run()内部会从confc中拿出ConfChange,而后进行真正的增减peers操做,以后将最新的成员组push到confstatec中,而ApplyConfChange函数从confstatec pop出最新的成员组返回给应用。

能够说,要想用上etcd的raft library仍是须要了解很多东西的。

相关文章
相关标签/搜索