Problem :
N只袜子排成一排,每次询问一个区间内的袜子种随机拿两只袜子颜色相同的几率。
Solution :
莫队算法真的是简单易懂又暴力。
莫队算法用来离线处理区间询问,要求每次区间的端点左右移动1能够直接求出,经过第一关键字分块排序左端点,第二关键字排序右端点,来合理安排询问的顺序,使得总的时间复杂度降低。每次询问直接暴力修改就行。
假设分为k块,每块大小为n/k。
那么左端点移动总的时间复杂度为 n * n / k
右端点移动总的时间复杂度为 k * n + n * kphp
#include <cstdio> #include <iostream> #include <algorithm> #include <cmath> #include <cstring> #include <string> #include <map> #include <vector> #include <queue> #include <ctime> using namespace std; #define f(i, x, y) for (int i = x; i <= y; ++i) #define fd(i, x, y) for (int i = x; i >= y; --i) #define rep(i, x, y) for (int i = x; i <= y; ++i) #define repd(i, x, y) for (int i = x; i >= y; --i) queue <int> Q; const int INF = 1e9 + 7; const int N = 200008; int n, m, q; vector <int> vec[N]; int dp[N]; int cnt[N], vis[N]; void init() { srand(time(NULL)); cin >> n >> m; for (int i = 1; i <= n; ++i) vec[i].clear(); for (int i = 1; i <= m; ++i) { int u, v; cin >> u >> v; vec[u].push_back(v); vec[v].push_back(u); } } void solve() { for (int i = 1; i <= n; ++i) dp[i] = rand() % 4; for (int i = 1; i <= n; ++i) Q.push(i), vis[i] = 1; while (!Q.empty()) { int u = Q.front(); Q.pop(); vis[u] = 0; for (int i = 0; i < 4; ++i) cnt[i] = 0; for (auto v : vec[u]) cnt[dp[v]]++; if (cnt[dp[u]] <= 1) continue; int qmin = INF, cl = 0; for (int i = 0; i < 4; ++i) if (cnt[i] < qmin) { qmin = cnt[i]; cl = i; } dp[u] = cl; for (auto v : vec[u]) if (dp[v] == cl && !vis[v]) Q.push(v); } for (int i = 1; i <= n; ++i) printf("%c",'a' + dp[i]); printf("\n"); } int main() { cin.sync_with_stdio(0); int T; cin >> T; for (int cas = 1; cas <= T; ++cas) { init(); solve(); } }