Read the fucking source code!
--By 鲁迅A picture is worth a thousand words.
--By 高尔基说明:node
这篇文章,让咱们来看看用户态进程的地址空间状况,主要会包括如下:linux
vma
;malloc
;mmap
;进程地址空间中,咱们常见的代码段,数据段,bss段等,实际上都是一段地址空间区域。Linux将地址空间中的区域称为Virtual Memory Area
, 简称VMA
,使用struct vm_area_struct
来描述。数据结构
在进行内存申请和映射时,都会去地址空间中申请一段虚拟地址区域,而这部分操做也与vma
关系密切,所以本文将vma/malloc/mmap
三个放到一块来进行分析。
开启探索之旅吧。app
主要涉及两个结构体:struct mm_struct
和struct vm_area_struct
。dom
struct mm_struct
struct mm_struct { struct vm_area_struct *mmap; /* list of VMAs */ //指向VMA对象的链表头 struct rb_root mm_rb; //指向VMA对象的红黑树的根 u64 vmacache_seqnum; /* per-thread vmacache */ #ifdef CONFIG_MMU unsigned long (*get_unmapped_area) (struct file *filp, unsigned long addr, unsigned long len, unsigned long pgoff, unsigned long flags); // 在进程地址空间中搜索有效线性地址区间的方法 #endif unsigned long mmap_base; /* base of mmap area */ unsigned long mmap_legacy_base; /* base of mmap area in bottom-up allocations */ #ifdef CONFIG_HAVE_ARCH_COMPAT_MMAP_BASES /* Base adresses for compatible mmap() */ unsigned long mmap_compat_base; unsigned long mmap_compat_legacy_base; #endif unsigned long task_size; /* size of task vm space */ unsigned long highest_vm_end; /* highest vma end address */ pgd_t * pgd; //指向页全局目录 /** * @mm_users: The number of users including userspace. * * Use mmget()/mmget_not_zero()/mmput() to modify. When this drops * to 0 (i.e. when the task exits and there are no other temporary * reference holders), we also release a reference on @mm_count * (which may then free the &struct mm_struct if @mm_count also * drops to 0). */ atomic_t mm_users; //使用计数器 /** * @mm_count: The number of references to &struct mm_struct * (@mm_users count as 1). * * Use mmgrab()/mmdrop() to modify. When this drops to 0, the * &struct mm_struct is freed. */ atomic_t mm_count; //使用计数器 atomic_long_t nr_ptes; /* PTE page table pages */ //进程页表数 #if CONFIG_PGTABLE_LEVELS > 2 atomic_long_t nr_pmds; /* PMD page table pages */ #endif int map_count; /* number of VMAs */ //VMA的个数 spinlock_t page_table_lock; /* Protects page tables and some counters */ struct rw_semaphore mmap_sem; struct list_head mmlist; /* List of maybe swapped mm's. These are globally strung * together off init_mm.mmlist, and are protected * by mmlist_lock */ unsigned long hiwater_rss; /* High-watermark of RSS usage */ unsigned long hiwater_vm; /* High-water virtual memory usage */ unsigned long total_vm; /* Total pages mapped */ //进程地址空间的页数 unsigned long locked_vm; /* Pages that have PG_mlocked set */ //锁住的页数,不能换出 unsigned long pinned_vm; /* Refcount permanently increased */ unsigned long data_vm; /* VM_WRITE & ~VM_SHARED & ~VM_STACK */ //数据段内存的页数 unsigned long exec_vm; /* VM_EXEC & ~VM_WRITE & ~VM_STACK */ //可执行内存映射的页数 unsigned long stack_vm; /* VM_STACK */ //用户态堆栈的页数 unsigned long def_flags; unsigned long start_code, end_code, start_data, end_data; //代码段,数据段等的地址 unsigned long start_brk, brk, start_stack; //堆栈段的地址,start_stack表示用户态堆栈的起始地址,brk为堆的当前最后地址 unsigned long arg_start, arg_end, env_start, env_end; //命令行参数的地址,环境变量的地址 unsigned long saved_auxv[AT_VECTOR_SIZE]; /* for /proc/PID/auxv */ /* * Special counters, in some configurations protected by the * page_table_lock, in other configurations by being atomic. */ struct mm_rss_stat rss_stat; struct linux_binfmt *binfmt; cpumask_var_t cpu_vm_mask_var; /* Architecture-specific MM context */ mm_context_t context; unsigned long flags; /* Must use atomic bitops to access the bits */ struct core_state *core_state; /* coredumping support */ #ifdef CONFIG_MEMBARRIER atomic_t membarrier_state; #endif #ifdef CONFIG_AIO spinlock_t ioctx_lock; struct kioctx_table __rcu *ioctx_table; #endif #ifdef CONFIG_MEMCG /* * "owner" points to a task that is regarded as the canonical * user/owner of this mm. All of the following must be true in * order for it to be changed: * * current == mm->owner * current->mm != mm * new_owner->mm == mm * new_owner->alloc_lock is held */ struct task_struct __rcu *owner; #endif struct user_namespace *user_ns; /* store ref to file /proc/<pid>/exe symlink points to */ struct file __rcu *exe_file; #ifdef CONFIG_MMU_NOTIFIER struct mmu_notifier_mm *mmu_notifier_mm; #endif #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS pgtable_t pmd_huge_pte; /* protected by page_table_lock */ #endif #ifdef CONFIG_CPUMASK_OFFSTACK struct cpumask cpumask_allocation; #endif #ifdef CONFIG_NUMA_BALANCING /* * numa_next_scan is the next time that the PTEs will be marked * pte_numa. NUMA hinting faults will gather statistics and migrate * pages to new nodes if necessary. */ unsigned long numa_next_scan; /* Restart point for scanning and setting pte_numa */ unsigned long numa_scan_offset; /* numa_scan_seq prevents two threads setting pte_numa */ int numa_scan_seq; #endif /* * An operation with batched TLB flushing is going on. Anything that * can move process memory needs to flush the TLB when moving a * PROT_NONE or PROT_NUMA mapped page. */ atomic_t tlb_flush_pending; #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH /* See flush_tlb_batched_pending() */ bool tlb_flush_batched; #endif struct uprobes_state uprobes_state; #ifdef CONFIG_HUGETLB_PAGE atomic_long_t hugetlb_usage; #endif struct work_struct async_put_work; #if IS_ENABLED(CONFIG_HMM) /* HMM needs to track a few things per mm */ struct hmm *hmm; #endif } __randomize_layout;
struct vm_area_struct
VMA
都对应一个struct vm_area_struct
。/* * This struct defines a memory VMM memory area. There is one of these * per VM-area/task. A VM area is any part of the process virtual memory * space that has a special rule for the page-fault handlers (ie a shared * library, the executable area etc). */ struct vm_area_struct { /* The first cache line has the info for VMA tree walking. */ unsigned long vm_start; /* Our start address within vm_mm. */ //起始地址 unsigned long vm_end; /* The first byte after our end address within vm_mm. */ //结束地址,区间中不包含结束地址 /* linked list of VM areas per task, sorted by address */ //按起始地址排序的链表 struct vm_area_struct *vm_next, *vm_prev; struct rb_node vm_rb; //红黑树节点 /* * Largest free memory gap in bytes to the left of this VMA. * Either between this VMA and vma->vm_prev, or between one of the * VMAs below us in the VMA rbtree and its ->vm_prev. This helps * get_unmapped_area find a free area of the right size. */ unsigned long rb_subtree_gap; /* Second cache line starts here. */ struct mm_struct *vm_mm; /* The address space we belong to. */ pgprot_t vm_page_prot; /* Access permissions of this VMA. */ unsigned long vm_flags; /* Flags, see mm.h. */ /* * For areas with an address space and backing store, * linkage into the address_space->i_mmap interval tree. */ struct { struct rb_node rb; unsigned long rb_subtree_last; } shared; /* * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma * list, after a COW of one of the file pages. A MAP_SHARED vma * can only be in the i_mmap tree. An anonymous MAP_PRIVATE, stack * or brk vma (with NULL file) can only be in an anon_vma list. */ struct list_head anon_vma_chain; /* Serialized by mmap_sem & * page_table_lock */ struct anon_vma *anon_vma; /* Serialized by page_table_lock */ /* Function pointers to deal with this struct. */ const struct vm_operations_struct *vm_ops; /* Information about our backing store: */ unsigned long vm_pgoff; /* Offset (within vm_file) in PAGE_SIZE units */ struct file * vm_file; /* File we map to (can be NULL). */ //指向文件的一个打开实例 void * vm_private_data; /* was vm_pte (shared mem) */ atomic_long_t swap_readahead_info; #ifndef CONFIG_MMU struct vm_region *vm_region; /* NOMMU mapping region */ #endif #ifdef CONFIG_NUMA struct mempolicy *vm_policy; /* NUMA policy for the VMA */ #endif struct vm_userfaultfd_ctx vm_userfaultfd_ctx; } __randomize_layout;
关系图来了:
async
是否是有点眼熟?这个跟内核中的vmap机制
很相似。函数
宏观的看一下进程地址空间中的各个VMA
:
工具
针对VMA
的操做,有以下接口:ui
/* VMA的查找 */ /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); //查找第一个知足addr < vm_end的VMA块 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, struct vm_area_struct **pprev); //与find_vma功能相似,不一样之处在于还会返回VMA连接的前一个VMA; static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr); //查找与start_addr~end_addr区域有交集的VMA /* VMA的插入 */ extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); //插入VMA到红黑树中和链表中 /* VMA的合并 */ extern struct vm_area_struct *vma_merge(struct mm_struct *, struct vm_area_struct *prev, unsigned long addr, unsigned long end, unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, struct mempolicy *, struct vm_userfaultfd_ctx); //将VMA与附近的VMA进行融合操做 /* VMA的拆分 */ extern int split_vma(struct mm_struct *, struct vm_area_struct *, unsigned long addr, int new_below); //将VMA以addr为界线分红两个VMA
上述的操做基本上也就是针对红黑树的操做。this
malloc
你们都很熟悉,那么它是怎么与底层去交互并申请到内存的呢?
图来了:
如图所示,malloc
最终会调到底层的sys_brk
函数和sys_mmap
函数,在分配小内存时调用sys_brk
函数,动态的调整进程地址空间中的brk
位置;在分配大块内存时,调用sys_mmap
函数,在堆和栈之间找到一片区域进行映射处理。
先来看sys_brk
函数,经过SYSCALL_DEFINE1
来定义,总体的函数调用流程以下:
从函数的调用过程当中能够看出有很多操做是针对vma
的,那么结合起来的效果图以下:
整个过程看起来就比较清晰和简单了,每一个进程都用struct mm_struct
来描述自身的进程地址空间,这些空间都是一些vma
区域,经过一个红黑树和链表来管理。所以针对malloc
的处理,会去动态的调整brk
的位置,具体的大小则由struct vm_area_struct
结构中的vm_start ~ vm_end
来指定。在实际过程当中,会根据请求分配区域是否与现有vma
重叠的状况来进行处理,或者从新申请一个vma
来描述这段区域,并最终插入到红黑树和链表中。
完成这段申请后,只是开辟了一段区域,一般还不会立马分配物理内存,物理内存的分配会发生在访问时出现缺页异常后再处理,这个后续也会有文章来进一步分析。
mmap
用于内存映射,也就是将一段区域映射到本身的进程地址空间中,分为两种:
同时,针对其余进程是否可见,又分为两种:
根据排列组合,就存在如下几种状况了:
/dev/zero
设备;常见的prot
权限和flags
以下:
#define PROT_READ 0x1 /* page can be read */ #define PROT_WRITE 0x2 /* page can be written */ #define PROT_EXEC 0x4 /* page can be executed */ #define PROT_SEM 0x8 /* page may be used for atomic ops */ #define PROT_NONE 0x0 /* page can not be accessed */ #define PROT_GROWSDOWN 0x01000000 /* mprotect flag: extend change to start of growsdown vma */ #define PROT_GROWSUP 0x02000000 /* mprotect flag: extend change to end of growsup vma */ #define MAP_SHARED 0x01 /* Share changes */ #define MAP_PRIVATE 0x02 /* Changes are private */ #define MAP_TYPE 0x0f /* Mask for type of mapping */ #define MAP_FIXED 0x10 /* Interpret addr exactly */ #define MAP_ANONYMOUS 0x20 /* don't use a file */ #define MAP_GROWSDOWN 0x0100 /* stack-like segment */ #define MAP_DENYWRITE 0x0800 /* ETXTBSY */ #define MAP_EXECUTABLE 0x1000 /* mark it as an executable */ #define MAP_LOCKED 0x2000 /* pages are locked */ #define MAP_NORESERVE 0x4000 /* don't check for reservations */ #define MAP_POPULATE 0x8000 /* populate (prefault) pagetables */ #define MAP_NONBLOCK 0x10000 /* do not block on IO */ #define MAP_STACK 0x20000 /* give out an address that is best suited for process/thread stacks */ #define MAP_HUGETLB 0x40000 /* create a huge page mapping */
mmap
的操做,最终会调用到do_mmap
函数,最后来一张调用图: