二叉搜索树的python实现

二叉查找树或者是一棵空树,或者是具备下列性质的二叉树: 若它的左子树不空,则左子树上全部结点的值均小于它的根结点的值; 若它的右子树不空,则右子树上全部结点的值均大于它的根结点的值; 它的左、右子树也分别为二叉排序树。
二叉搜索树不必定是彻底二叉树,所以不能像堆同样能够数组表示。
定义一个TNode类来实例化节点,有key,value,l_child,r_child属性。其中key,value经过构造函数传入,l_child,r_child初始化为None。node

再定义一个BSTree类,根节点初始化为None。数组

而后给BSTree添加如下方法:
insert(key,value) 插入一个节点
update(key,value) 更新节点的值
search(key) 经过key来找相应节点的value
remove(key) 经过key来删除树中相应节点
以及深度优先和广度优先的遍历方法。app

insert:
传入参数key,value,插入一个新的节点。可是若是树中已经存在key为key的节点,就将插入操做转变为更新操做。函数

def __insert(self, key, value, curr_node):
        if curr_node is None:
            return TNode(key, value)

        if key < curr_node.key:
            curr_node.l_child = self.__insert(key, value, curr_node.l_child)

        elif key > curr_node.key:
            curr_node.r_child = self.__insert(key, value, curr_node.r_child)

        else:
            curr_node.value = value

        return curr_node

当当前的节点为None时,根据参数中的key和value创建新的节点,并返回这个节点。当key值小于当前节点的key时,将新节点插入到当前节点的左子树的相应位置,而后返回当前节点。同理key值大于当前节点的key时,将新节点插入到当前节点的右子树的相应位置,返回当前节点。若是key等于当前节点key,将插入操做改变为更新操做。code

search:排序

def __search(self, node, key):
        if node:
            if node.key == key:
                return node
            elif node.key > key:
                return self.__search(node.l_child, key)
            else:
                return self.__search(node.r_child, key)

        return False

在当前node为根节点的子树中,查找key为key的子节点,若是当前node的key值与参数相同,返回当前节点。不然递归地到左右子树中找key为key的节点,若是没有找到,最终返回False。递归

update:队列

def __update(self, key, value, node):
        if node:
            if node.key == key:
                node.value = value
            elif node.key > key:
                self.__update(key, value, node.l_child)
            else:
                self.__update(key, value, node.r_child)

在当前node为根节点的子树中,查找key为key的节点。若是当前node的key值与参数相同,更新当前节点的value。不然递归地到左右子树中找到key为key的节点,并更新value。rem

remove:get

执行remove操做时,分为两种状况。
1.当前要删除的节点没有右子节点,此时将左子节点做为当前节点,返回。
2.当前要删除的节点(node_to_delete)有右子节点(r_child),找到右子节点下,最小的节点(r_child_smallest_child),将该节点与要删除的节点换位置。具体操做为:先拿到r_child_smallest_child,再将该节点从以r_child为根的子树中删除。再将node_to_delete的左孩子做为r_child_smallest_child的左孩子,node_to_delete的右孩子做为r_child_smallest_child的右孩子。最终将r_child_smallest_child赋给node_to_delete,并返回。

代码以下:

def __remove(self, node, key):
        if node:
            if node.key < key:
                node.r_child = self.__remove(node.r_child, key)
            elif node.key > key:
                node.l_child = self.__remove(node.l_child, key)
            else:
                if node.r_child is None:
                    node = node.l_child
                else:
                    node_r_child_smallest_child = self.__get_smallest_child(node.r_child)
                    self.__remove_smallest(node.r_child)
                    node_r_child_smallest_child.r_child = node.r_child
                    node_r_child_smallest_child.l_child = node.l_child
                    node = node_r_child_smallest_child
            return node

        return False

其中__remove_smallest和__get_smallest_child含义分别是:删除当前节点下,最小的节点,以及得到当前节点下最小的节点。
代码以下:

def __remove_smallest(self, node):
        if node.l_child:
            node.l_child = self.__remove_smallest(node.l_child)
            return node
        return node.r_child

当当前节点有左孩子时,删除左子树中最小的节点,而且返回当前节点。没有左孩子时,返回右孩子。

def __get_smallest_child(self, node):
        if node.l_child:
            return self.__get_smallest_child(node.l_child)
        return node

当当前节点有左孩子时,得到左子树中最小的节点。没有左孩子时,返回当前节点。

深度优先遍历,能够选择先序遍历,中序遍历,后续遍历,以其中之一为例:

def __l_m_r(self, node):
        if node:
            self.__l_m_r(node.l_child)
            print(node)
            self.__l_m_r(node.r_child)

当进行广度优先遍历时,须要用到队列。

def bfs(self):
        queue = deque()
        queue.append(self.root)

        while queue:
            node = queue.popleft()
            if node:
                l_child = node.l_child
                r_child = node.r_child
                print(node.value)
                queue.append(l_child)
                queue.append(r_child)

以上是我所了解的二叉搜索树的基本功能

相关文章
相关标签/搜索