二叉排序树(Binary Sort Tree),又称二叉查找树(Binary Search Tree),也称二叉搜索树。node
定义:数组
添加删除查找节点方法实现:优化
#include <stdio.h> #include <stdlib.h> #define SIZE 10 typedef struct tagNode{ int value; struct tagNode* left; struct tagNode* right; }treeNode; //打印数组 void displayArray(int array[],int size){ printf("the array is:"); int i; for(i=0;i<size;i++){ printf("%d ",array[i]); } printf("\n"); } //按左中右顺序遍历树 void displayTree(treeNode* node){ if(node == NULL) return; if(node->left != NULL){ displayTree(node->left); } printf("%d ",node->value); if(node->right != NULL){ displayTree(node->right); } } //查找以node为节点的树中上是否存在vlaue的节点 treeNode* searchTree(treeNode* node, int value){ if(node->value == value){ return node; }else if(node->value > value){ if(node->left != NULL){ return searchTree(node->left, value); }else{ return NULL; } }else{ if(node->right != NULL){ return searchTree(node->right, value); }else{ return NULL; } } } //查找以node为节点的树中上是否存在vlaue的节点,parent为查找到的节点的父节点。 //dir为1表示parent节点的左节点为查找结果 //dir为2表示parent节点的右节点为查找结果 treeNode* searchTreeWithParent(treeNode* node, treeNode** parent, int* dir, int value){ if(node->value == value){ return node; }else if(node->value > value){ if(node->left != NULL){ *dir = 1; *parent = node; return searchTreeWithParent(node->left, parent, dir, value); }else{ return NULL; } }else{ if(node->right != NULL){ *dir = 2; *parent = node; return searchTreeWithParent(node->right, parent, dir, value); }else{ return NULL; } } } //将iNode插入到以node为根节点的树中 void insertNode(treeNode* node, treeNode* iNode){ if(iNode->value >= node->value && node->right != NULL){ insertNode(node->right, iNode); return; } if(iNode->value < node->value && node->left != NULL){ insertNode(node->left, iNode); return; } if(iNode->value >= node->value && node->right == NULL){ node->right = iNode; } if(iNode->value < node->value && node->left == NULL){ node->left = iNode; } } //从以root为根节点的树中删除值为value的节点 void deleteNode(treeNode** root, int value){ treeNode* parent = NULL; int dir = -1; treeNode* deleteNode = searchTreeWithParent(*root,&parent,&dir,value); if(deleteNode == NULL){ printf("%s\n", "node not found"); }else{ if(deleteNode->left == NULL && deleteNode->right == NULL){ //对应说明中的a if(parent != NULL){ if(dir == 1) parent->left = NULL; else parent->right = NULL; }else{//对应说明中的b *root = NULL; } }else if(deleteNode->left != NULL && deleteNode->right == NULL){ //对应说明中的c if(parent != NULL){ if(dir == 1) parent->left = deleteNode->left; else parent->right = deleteNode->left; }else{//对应说明中的d *root = deleteNode->left; } }else if(deleteNode->left == NULL && deleteNode->right != NULL){ //对应说明中的e if(parent != NULL){ if(dir == 1) parent->left = deleteNode->right; else parent->right = deleteNode->right; }else{//对应说明中的f *root = deleteNode->right; } }else{ insertNode(deleteNode->left,deleteNode->right); //对应说明中的g if(parent != NULL){ if(dir == 1) parent->left = deleteNode->left; else parent->right = deleteNode->left; }else{//对应说明中的h *root = deleteNode->left; } } free(deleteNode); deleteNode = NULL; } } //使用array数组中的数,建立以root为根节点的树, void createTree(treeNode** root, int array[], int size){ int i; *root = (treeNode*)malloc(sizeof(treeNode)); (*root)->value = array[0]; (*root)->left = NULL; (*root)->right = NULL; for(i=1;i<size;i++){ treeNode* child = (treeNode*)malloc(sizeof(treeNode)); child->value = array[i]; child->left = NULL; child->right = NULL; insertNode(*root, child); } } //删除以node为根节点的树 void deleteTree(treeNode* node){ if(node == NULL) return; if(node->left != NULL){ deleteTree(node->left); } if(node->right != NULL){ deleteTree(node->right); } if(node->left == NULL && node->right == NULL){ free(node); node = NULL; } } int main(int argc, char* argv[]){ int array[SIZE] = {4,1,45,78,345,23,12,3,6,21}; displayArray(array,SIZE); treeNode *root = NULL; createTree(&root, array, SIZE); printf("the tree is(left->middle->right):"); displayTree(root); printf("\n"); int value = atoi(argv[1]); treeNode* parent = NULL; int dir = -1; printf("search value %d:",value); if(searchTree(root,value) != NULL){ printf("%s\n","exist"); }else{ printf("%s\n","not exist"); } printf("delete value:%d ",value); deleteNode(&root,value); printf("\n"); printf("the tree is(left->middle->right):"); displayTree(root); printf("\n"); deleteTree(root); return 0; }
红黑树是对二叉排序树的优化,在每次插入节点后根据黑树树的特定规则调整树的结构,使树尽可能的平衡。code
红黑树规则:排序
这些约束强制了红黑树的关键性质:从根到叶子的最长的可能路径很少余最短可能路径的两倍长。结果是这个树大体上是平衡的。由于操做好比插入、删除和查找某个值的最坏状况时间都要求与树的高度成比例,这个在高度上的理论上限容许红黑树在最坏状况下都是高效的,而不一样于普通的二叉查找树。get
要知道为何这些特性确保了这个结果,注意到性质4致使了路径不能有两个毗连的红色节点就足够了。最短的可能路径都是黑色节点,最长的可能路径有交替的红色和黑色节点。由于根据性质5全部最长的路径都有相同数目的黑色节点,这就代表了没有路径能多于任何其余路径的两倍长。it