在sql中有一类函数叫作聚合函数,例如sum()、avg()、max()等等,这类函数能够将多行数据按照规则汇集为一行,通常来说汇集后的行数是要少于汇集前的行数的。可是有时咱们想要既显示汇集前的数据,又要显示汇集后的数据,这时咱们便引入了窗口函数。窗口函数又叫OLAP函数/分析函数,窗口函数兼具分组和排序功能。sql
窗口函数最重要的关键字是 partition by 和 order by。cookie
具体语法以下:over (partition by xxx order by xxx)函数
准备数据学习
建表语句: create table bigdata_t1( cookieid string, createtime string, --day pv int ) row format delimited fields terminated by ','; 加载数据: load data local inpath '/root/hivedata/bigdata_t1.dat' into table bigdata_t1; cookie1,2018-04-10,1 cookie1,2018-04-11,5 cookie1,2018-04-12,7 cookie1,2018-04-13,3 cookie1,2018-04-14,2 cookie1,2018-04-15,4 cookie1,2018-04-16,4 开启智能本地模式 SET hive.exec.mode.local.auto=true;
SUM函数和窗口函数的配合使用:结果和ORDER BY相关,默认为升序。大数据
#pv1 select cookieid,createtime,pv, sum(pv) over(partition by cookieid order by createtime) as pv1 from bigdata_t1; #pv2 select cookieid,createtime,pv, sum(pv) over(partition by cookieid order by createtime rows between unbounded preceding and current row) as pv2 from bigdata_t1; #pv3 select cookieid,createtime,pv, sum(pv) over(partition by cookieid) as pv3 from bigdata_t1; #pv4 select cookieid,createtime,pv, sum(pv) over(partition by cookieid order by createtime rows between 3 preceding and current row) as pv4 from bigdata_t1; #pv5 select cookieid,createtime,pv, sum(pv) over(partition by cookieid order by createtime rows between 3 preceding and 1 following) as pv5 from bigdata_t1; #pv6 select cookieid,createtime,pv, sum(pv) over(partition by cookieid order by createtime rows between current row and unbounded following) as pv6 from bigdata_t1; pv1: 分组内从起点到当前行的pv累积,如,11号的pv1=10号的pv+11号的pv, 12号=10号+11号+12号 pv2: 同pv1 pv3: 分组内(cookie1)全部的pv累加 pv4: 分组内当前行+往前3行,如,11号=10号+11号, 12号=10号+11号+12号, 13号=10号+11号+12号+13号, 14号=11号+12号+13号+14号 pv5: 分组内当前行+往前3行+日后1行,如,14号=11号+12号+13号+14号+15号=5+7+3+2+4=21 pv6: 分组内当前行+日后全部行,如,13号=13号+14号+15号+16号=3+2+4+4=13, 14号=14号+15号+16号=2+4+4=10
若是不指定rows between,默认为从起点到当前行;url
若是不指定order by,则将分组内全部值累加;code
关键是理解rows between含义,也叫作window子句:orm
preceding:往前排序
following:日后string
current row:当前行
unbounded:起点
unbounded preceding 表示从前面的起点
unbounded following:表示到后面的终点
AVG,MIN,MAX,和SUM用法同样。
准备数据
cookie1,2018-04-10,1 cookie1,2018-04-11,5 cookie1,2018-04-12,7 cookie1,2018-04-13,3 cookie1,2018-04-14,2 cookie1,2018-04-15,4 cookie1,2018-04-16,4 cookie2,2018-04-10,2 cookie2,2018-04-11,3 cookie2,2018-04-12,5 cookie2,2018-04-13,6 cookie2,2018-04-14,3 cookie2,2018-04-15,9 cookie2,2018-04-16,7 CREATE TABLE bigdata_t2 ( cookieid string, createtime string, --day pv INT ) ROW FORMAT DELIMITED FIELDS TERMINATED BY ',' stored as textfile; 加载数据: load data local inpath '/root/hivedata/bigdata_t2.dat' into table bigdata_t2;
ROW_NUMBER()使用
ROW_NUMBER()从1开始,按照顺序,生成分组内记录的序列。
SELECT cookieid, createtime, pv, ROW_NUMBER() OVER(PARTITION BY cookieid ORDER BY pv desc) AS rn FROM bigdata_t2;
RANK 和 DENSE_RANK使用
RANK() 生成数据项在分组中的排名,排名相等会在名次中留下空位 。
DENSE_RANK()生成数据项在分组中的排名,排名相等会在名次中不会留下空位。
SELECT cookieid, createtime, pv, RANK() OVER(PARTITION BY cookieid ORDER BY pv desc) AS rn1, DENSE_RANK() OVER(PARTITION BY cookieid ORDER BY pv desc) AS rn2, ROW_NUMBER() OVER(PARTITION BY cookieid ORDER BY pv DESC) AS rn3 FROM bigdata_t2 WHERE cookieid = 'cookie1';
NTILE
有时会有这样的需求:若是数据排序后分为三部分,业务人员只关心其中的一部分,如何将这中间的三分之一数据拿出来呢?NTILE函数便可以知足。
ntile能够当作是:把有序的数据集合平均分配到指定的数量(num)个桶中, 将桶号分配给每一行。若是不能平均分配,则优先分配较小编号的桶,而且各个桶中能放的行数最多相差1。
而后能够根据桶号,选取前或后 n分之几的数据。数据会完整展现出来,只是给相应的数据打标签;具体要取几分之几的数据,须要再嵌套一层根据标签取出。
SELECT cookieid, createtime, pv, NTILE(2) OVER(PARTITION BY cookieid ORDER BY createtime) AS rn1, NTILE(3) OVER(PARTITION BY cookieid ORDER BY createtime) AS rn2, NTILE(4) OVER(ORDER BY createtime) AS rn3 FROM bigdata_t2 ORDER BY cookieid,createtime;
SELECT cookieid, createtime, url, ROW_NUMBER() OVER(PARTITION BY cookieid ORDER BY createtime) AS rn, LAG(createtime,1,'1970-01-01 00:00:00') OVER(PARTITION BY cookieid ORDER BY createtime) AS last_1_time, LAG(createtime,2) OVER(PARTITION BY cookieid ORDER BY createtime) AS last_2_time FROM bigdata_t4; last_1_time: 指定了往上第1行的值,default为'1970-01-01 00:00:00' cookie1第一行,往上1行为NULL,所以取默认值 1970-01-01 00:00:00 cookie1第三行,往上1行值为第二行值,2015-04-10 10:00:02 cookie1第六行,往上1行值为第五行值,2015-04-10 10:50:01 last_2_time: 指定了往上第2行的值,为指定默认值 cookie1第一行,往上2行为NULL cookie1第二行,往上2行为NULL cookie1第四行,往上2行为第二行值,2015-04-10 10:00:02 cookie1第七行,往上2行为第五行值,2015-04-10 10:50:01
LEAD
与LAG相反
LEAD(col,n,DEFAULT) 用于统计窗口内往下第n行值
第一个参数为列名,第二个参数为往下第n行(可选,默认为1),第三个参数为默认值(当往下第n行为NULL时候,取默认值,如不指定,则为NULL)
SELECT cookieid, createtime, url, ROW_NUMBER() OVER(PARTITION BY cookieid ORDER BY createtime) AS rn, LEAD(createtime,1,'1970-01-01 00:00:00') OVER(PARTITION BY cookieid ORDER BY createtime) AS next_1_time, LEAD(createtime,2) OVER(PARTITION BY cookieid ORDER BY createtime) AS next_2_time FROM bigdata_t4;
FIRST_VALUE
取分组内排序后,截止到当前行,第一个值
SELECT cookieid, createtime, url, ROW_NUMBER() OVER(PARTITION BY cookieid ORDER BY createtime) AS rn, FIRST_VALUE(url) OVER(PARTITION BY cookieid ORDER BY createtime) AS first1 FROM bigdata_t4;
LAST_VALUE
取分组内排序后,截止到当前行,最后一个值
SELECT cookieid, createtime, url, ROW_NUMBER() OVER(PARTITION BY cookieid ORDER BY createtime) AS rn, LAST_VALUE(url) OVER(PARTITION BY cookieid ORDER BY createtime) AS last1 FROM bigdata_t4;
若是想要取分组内排序后最后一个值,则须要变通一下:
SELECT cookieid, createtime, url, ROW_NUMBER() OVER(PARTITION BY cookieid ORDER BY createtime) AS rn, LAST_VALUE(url) OVER(PARTITION BY cookieid ORDER BY createtime) AS last1, FIRST_VALUE(url) OVER(PARTITION BY cookieid ORDER BY createtime DESC) AS last2 FROM bigdata_t4 ORDER BY cookieid,createtime;
特别注意order by
若是不指定ORDER BY,则进行排序混乱,会出现错误的结果
SELECT cookieid, createtime, url, FIRST_VALUE(url) OVER(PARTITION BY cookieid) AS first2 FROM bigdata_t4;
这两个序列分析函数不是很经常使用,注意: 序列函数不支持WINDOW子句
d1,user1,1000 d1,user2,2000 d1,user3,3000 d2,user4,4000 d2,user5,5000 CREATE EXTERNAL TABLE bigdata_t3 ( dept STRING, userid string, sal INT ) ROW FORMAT DELIMITED FIELDS TERMINATED BY ',' stored as textfile; 加载数据: load data local inpath '/root/hivedata/bigdata_t3.dat' into table bigdata_t3;
CUME_DIST 和order by的排序顺序有关系
CUME_DIST 小于等于当前值的行数/分组内总行数 order 默认顺序 正序 升序
好比,统计小于等于当前薪水的人数,所占总人数的比例
SELECT dept, userid, sal, CUME_DIST() OVER(ORDER BY sal) AS rn1, CUME_DIST() OVER(PARTITION BY dept ORDER BY sal) AS rn2 FROM bigdata_t3; rn1: 没有partition,全部数据均为1组,总行数为5, 第一行:小于等于1000的行数为1,所以,1/5=0.2 第三行:小于等于3000的行数为3,所以,3/5=0.6 rn2: 按照部门分组,dpet=d1的行数为3, 第二行:小于等于2000的行数为2,所以,2/3=0.6666666666666666
PERCENT_RANK
PERCENT_RANK 分组内当前行的RANK值-1/分组内总行数-1
SELECT dept, userid, sal, PERCENT_RANK() OVER(ORDER BY sal) AS rn1, --分组内 RANK() OVER(ORDER BY sal) AS rn11, --分组内RANK值 SUM(1) OVER(PARTITION BY NULL) AS rn12, --分组内总行数 PERCENT_RANK() OVER(PARTITION BY dept ORDER BY sal) AS rn2 FROM bigdata_t3; rn1: rn1 = (rn11-1) / (rn12-1) 第一行,(1-1)/(5-1)=0/4=0 第二行,(2-1)/(5-1)=1/4=0.25 第四行,(4-1)/(5-1)=3/4=0.75 rn2: 按照dept分组, dept=d1的总行数为3 第一行,(1-1)/(3-1)=0 第三行,(3-1)/(3-1)=1
这几个分析函数一般用于OLAP中,不能累加,并且须要根据不一样维度上钻和下钻的指标统计,好比,分小时、天、月的UV数。
2018-03,2018-03-10,cookie1 2018-03,2018-03-10,cookie5 2018-03,2018-03-12,cookie7 2018-04,2018-04-12,cookie3 2018-04,2018-04-13,cookie2 2018-04,2018-04-13,cookie4 2018-04,2018-04-16,cookie4 2018-03,2018-03-10,cookie2 2018-03,2018-03-10,cookie3 2018-04,2018-04-12,cookie5 2018-04,2018-04-13,cookie6 2018-04,2018-04-15,cookie3 2018-04,2018-04-15,cookie2 2018-04,2018-04-16,cookie1 CREATE TABLE bigdata_t5 ( month STRING, day STRING, cookieid STRING ) ROW FORMAT DELIMITED FIELDS TERMINATED BY ',' stored as textfile; 加载数据: load data local inpath '/root/hivedata/bigdata_t5.dat' into table bigdata_t5;
GROUPING SETS
grouping sets是一种将多个group by 逻辑写在一个sql语句中的便利写法。
等价于将不一样维度的GROUP BY结果集进行UNION ALL。
GROUPING__ID,表示结果属于哪个分组集合。
SELECT month, day, COUNT(DISTINCT cookieid) AS uv, GROUPING__ID FROM bigdata_t5 GROUP BY month,day GROUPING SETS (month,day) ORDER BY GROUPING__ID; grouping_id表示这一组结果属于哪一个分组集合, 根据grouping sets中的分组条件month,day,1是表明month,2是表明day 等价于 SELECT month,NULL,COUNT(DISTINCT cookieid) AS uv,1 AS GROUPING__ID FROM bigdata_t5 GROUP BY month UNION ALL SELECT NULL as month,day,COUNT(DISTINCT cookieid) AS uv,2 AS GROUPING__ID FROM bigdata_t5 GROUP BY day;
再如:
SELECT month, day, COUNT(DISTINCT cookieid) AS uv, GROUPING__ID FROM bigdata_t5 GROUP BY month,day GROUPING SETS (month,day,(month,day)) ORDER BY GROUPING__ID; 等价于 SELECT month,NULL,COUNT(DISTINCT cookieid) AS uv,1 AS GROUPING__ID FROM bigdata_t5 GROUP BY month UNION ALL SELECT NULL,day,COUNT(DISTINCT cookieid) AS uv,2 AS GROUPING__ID FROM bigdata_t5 GROUP BY day UNION ALL SELECT month,day,COUNT(DISTINCT cookieid) AS uv,3 AS GROUPING__ID FROM bigdata_t5 GROUP BY month,day;
CUBE
根据GROUP BY的维度的全部组合进行聚合。
SELECT month, day, COUNT(DISTINCT cookieid) AS uv, GROUPING__ID FROM bigdata_t5 GROUP BY month,day WITH CUBE ORDER BY GROUPING__ID; 等价于 SELECT NULL,NULL,COUNT(DISTINCT cookieid) AS uv,0 AS GROUPING__ID FROM bigdata_t5 UNION ALL SELECT month,NULL,COUNT(DISTINCT cookieid) AS uv,1 AS GROUPING__ID FROM bigdata_t5 GROUP BY month UNION ALL SELECT NULL,day,COUNT(DISTINCT cookieid) AS uv,2 AS GROUPING__ID FROM bigdata_t5 GROUP BY day UNION ALL SELECT month,day,COUNT(DISTINCT cookieid) AS uv,3 AS GROUPING__ID FROM bigdata_t5 GROUP BY month,day;
ROLLUP
是CUBE的子集,以最左侧的维度为主,从该维度进行层级聚合。
好比,以month维度进行层级聚合: SELECT month, day, COUNT(DISTINCT cookieid) AS uv, GROUPING__ID FROM bigdata_t5 GROUP BY month,day WITH ROLLUP ORDER BY GROUPING__ID; --把month和day调换顺序,则以day维度进行层级聚合: SELECT day, month, COUNT(DISTINCT cookieid) AS uv, GROUPING__ID FROM bigdata_t5 GROUP BY day,month WITH ROLLUP ORDER BY GROUPING__ID; (这里,根据天和月进行聚合,和根据天聚合结果同样,由于有父子关系,若是是其余维度组合的话,就会不同)