JDK提供了一个工具类Executors来很是方便的建立线程池,下面主要经过一个示例来分析Java线程池的实现原理。java
Runnable runnable = new Runnable() { @Override public void run() { // do something } }; ExecutorService executorService = Executors.newFixedThreadPool(2); executorService.submit(runnable); executorService.shutdown();
例子里面使用了Executors.newFixedThreadPool(2)建立了一个固定只有2个线程的线程池,返回了一个ExecutorService对象,而后调用executorService.submit()方法来启动一个线程,最后调用executorService.shutdown()来关闭线程池。编程
使用起来很是的方便,接下来经过深刻源代码看一下背后的原理。并发
看一下ExecutorService的定义异步
public interface ExecutorService extends Executor { void shutdown(); List<Runnable> shutdownNow(); boolean isShutdown(); boolean isTerminated(); boolean awaitTermination(long timeout, TimeUnit unit) throws InterruptedException; <T> Future<T> submit(Callable<T> task); <T> Future<T> submit(Runnable task, T result); Future<?> submit(Runnable task); ... }
ExecutorService继承自Executoride
public interface Executor { void execute(Runnable command); }
列出了一部分的接口,主要是提供了几个启动线程执行线程任务的方法,接收不一样的参数,以及关闭线程池的方法。submit方法接收Runnable或者Callable方法,返回一个Future对象用于异步获取执行结果。execute方法只接收一个Runnable参数,而且没有返回值。工具
再看一下Executors工具类的定义oop
public class Executors { public static ExecutorService newFixedThreadPool(int nThreads) { return new ThreadPoolExecutor(nThreads, nThreads, 0L, TimeUnit.MILLISECONDS, new LinkedBlockingQueue<Runnable>()); } public static ExecutorService newWorkStealingPool() { return new ForkJoinPool (Runtime.getRuntime().availableProcessors(), ForkJoinPool.defaultForkJoinWorkerThreadFactory, null, true); } public static ExecutorService newSingleThreadExecutor() { return new FinalizableDelegatedExecutorService (new ThreadPoolExecutor(1, 1, 0L, TimeUnit.MILLISECONDS, new LinkedBlockingQueue<Runnable>())); } public static ExecutorService newCachedThreadPool() { return new ThreadPoolExecutor(0, Integer.MAX_VALUE, 60L, TimeUnit.SECONDS, new SynchronousQueue<Runnable>()); } ... }
大体是这个样子的,这里列出了一部分,提供了建立固定线程数的线程池(newFixedThreadPool),工做窃取的线程池(newWorkStealingPool),单个线程的线程池(newSingleThreadExecutor),不知道怎么称呼的线程池(newCachedThreadPool)。源码分析
以FixedThreadPool为例一探究竟,看一下FixedThreadPool返回的 ThreadPoolExecutor到底是什么东西学习
public class ThreadPoolExecutor extends AbstractExecutorService {...} public abstract class AbstractExecutorService implements ExecutorService { ... protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) { return new FutureTask<T>(callable); } public Future<?> submit(Runnable task) { if (task == null) throw new NullPointerException(); RunnableFuture<Void> ftask = newTaskFor(task, null); execute(ftask); return ftask; } public <T> Future<T> submit(Callable<T> task) { if (task == null) throw new NullPointerException(); RunnableFuture<T> ftask = newTaskFor(task); execute(ftask); return ftask; } ... }
ThreadPoolExecutor继承自AbstractExecutorService,AbstractExecutorService是一个实现了ExecutorService的抽象类。ui
抽象类中提供了submit方法的具体实现,将传入的Runnable或者Callable方法经过newTaskFor方法转换成一个FutureTask对象(它是RunnableFuture)的实现类,而后调用父类的execute方法执行任务,最终返回runnableFuture对象。从这能够看出来ExecutorService.submit()方法内部仍是经过调用Executor.execute()方法来执行的,只是将参数转换成一个Future对象,经过Future对象来获取执行结果。
/** * The runState provides the main lifecycle control, taking on values: * * RUNNING: Accept new tasks and process queued tasks * SHUTDOWN: Don't accept new tasks, but process queued tasks * STOP: Don't accept new tasks, don't process queued tasks, * and interrupt in-progress tasks * TIDYING: All tasks have terminated, workerCount is zero, * the thread transitioning to state TIDYING * will run the terminated() hook method * TERMINATED: terminated() has completed * * The numerical order among these values matters, to allow * ordered comparisons. The runState monotonically increases over * time, but need not hit each state. The transitions are: * * RUNNING -> SHUTDOWN * On invocation of shutdown(), perhaps implicitly in finalize() * (RUNNING or SHUTDOWN) -> STOP * On invocation of shutdownNow() * SHUTDOWN -> TIDYING * When both queue and pool are empty * STOP -> TIDYING * When pool is empty * TIDYING -> TERMINATED * When the terminated() hook method has completed */ private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0)); private static final int COUNT_BITS = Integer.SIZE - 3; private static final int CAPACITY = (1 << COUNT_BITS) - 1; // runState is stored in the high-order bits private static final int RUNNING = -1 << COUNT_BITS; private static final int SHUTDOWN = 0 << COUNT_BITS; private static final int STOP = 1 << COUNT_BITS; private static final int TIDYING = 2 << COUNT_BITS; private static final int TERMINATED = 3 << COUNT_BITS; // Packing and unpacking ctl private static int runStateOf(int c) { return c & ~CAPACITY; } private static int workerCountOf(int c) { return c & CAPACITY; } private static int ctlOf(int rs, int wc) { return rs | wc; }
定义了5种线程池的状态
有5种状态变化的流程
AtomicInteger类型的ctl变量存着当前worker(Worker是一个内部类,下面会详细解释)的数量。
ThreadPoolExecutor用一个32位整型的高3位表示运行的状态,剩下的29位表示能够支持的线程数。
COUNT_BITS 为32-3 = 29, 好比 RUNNING 是 -1 << COUNT_BITS,即-1带符号位左移29位,就是101000...0,STOP为001000...0,TIDYING为010000...0。
CAPACITY 为 (1 << COUNT_BITS) - 1,1左移29位以后-1,最后的结果位 0001111...1,最高3位是0 剩下的29位都是1。
workerCountOf(int c) 用来计算当前线程数,用的方法是 c & CAPACITY 即 c & 0001111...1,取除了高3位的剩下29位来判断。
runStateOf(int c) 用来查看当前的线程状态, c & ~CAPACITY 即 c & 1110000...0,取高3位来判断。
private final BlockingQueue<Runnable> workQueue; private final ReentrantLock mainLock = new ReentrantLock(); private final HashSet<Worker> workers = new HashSet<Worker>(); private final Condition termination = mainLock.newCondition(); private int largestPoolSize; private long completedTaskCount; private volatile ThreadFactory threadFactory; private volatile RejectedExecutionHandler handler; private volatile long keepAliveTime; private volatile boolean allowCoreThreadTimeOut; private volatile int corePoolSize; private volatile int maximumPoolSize; private static final RejectedExecutionHandler defaultHandler = new AbortPolicy(); private static final RuntimePermission shutdownPerm = new RuntimePermission("modifyThread");
在来看一些其余的全局属性。workerQueue 一个BlockingQueue存放Runnable对象,workers 一个HashSet存放Worker对象,还有一些corePoolSize maximumPoolSize等就是平时配置链接池的参数。
public static ExecutorService newFixedThreadPool(int nThreads) { return new ThreadPoolExecutor(nThreads, nThreads, 0L, TimeUnit.MILLISECONDS, new LinkedBlockingQueue<Runnable>()); } public ThreadPoolExecutor(int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit unit, BlockingQueue<Runnable> workQueue) { this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue, Executors.defaultThreadFactory(), defaultHandler); } public ThreadPoolExecutor(int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit unit, BlockingQueue<Runnable> workQueue, ThreadFactory threadFactory, RejectedExecutionHandler handler) { if (corePoolSize < 0 || maximumPoolSize <= 0 || maximumPoolSize < corePoolSize || keepAliveTime < 0) throw new IllegalArgumentException(); if (workQueue == null || threadFactory == null || handler == null) throw new NullPointerException(); this.acc = System.getSecurityManager() == null ? null : AccessController.getContext(); this.corePoolSize = corePoolSize; this.maximumPoolSize = maximumPoolSize; this.workQueue = workQueue; this.keepAliveTime = unit.toNanos(keepAliveTime); this.threadFactory = threadFactory; this.handler = handler; }
Executors提供的newFIxedThreadPool方法其实建立的是一个ThreadPoolExecutor对象,以 newFixedPoolSize(2) 为例,经过将corePoolSize maximumPoolSize都是设置为2来实现固定数量的线程池。keepAliveTime设置为0微秒。workerQueue传入了一个LinkedBlockingQueue对象。
public void execute(Runnable command) { if (command == null) throw new NullPointerException(); /* * Proceed in 3 steps: * * 1. If fewer than corePoolSize threads are running, try to * start a new thread with the given command as its first * task. The call to addWorker atomically checks runState and * workerCount, and so prevents false alarms that would add * threads when it shouldn't, by returning false. * * 2. If a task can be successfully queued, then we still need * to double-check whether we should have added a thread * (because existing ones died since last checking) or that * the pool shut down since entry into this method. So we * recheck state and if necessary roll back the enqueuing if * stopped, or start a new thread if there are none. * * 3. If we cannot queue task, then we try to add a new * thread. If it fails, we know we are shut down or saturated * and so reject the task. */ int c = ctl.get(); if (workerCountOf(c) < corePoolSize) { if (addWorker(command, true)) return; c = ctl.get(); } if (isRunning(c) && workQueue.offer(command)) { int recheck = ctl.get(); if (! isRunning(recheck) && remove(command)) reject(command); else if (workerCountOf(recheck) == 0) addWorker(null, false); } else if (!addWorker(command, false)) reject(command); }
通读几遍代码加上上面的注释,基本能够理解整个方法的意思。主要的思想是
注释中的第二点作了不少检查,将任务加到等待队列以后还要作一次检查看看是否须要建立Worker,防止以前建立的Worker已经出现异常中止了。不理解不要紧,不影响对线程池原理的学习。
private boolean addWorker(Runnable firstTask, boolean core) { retry: for (;;) { int c = ctl.get(); int rs = runStateOf(c); // Check if queue empty only if necessary. if (rs >= SHUTDOWN && ! (rs == SHUTDOWN && firstTask == null && ! workQueue.isEmpty())) return false; for (;;) { int wc = workerCountOf(c); if (wc >= CAPACITY || wc >= (core ? corePoolSize : maximumPoolSize)) return false; if (compareAndIncrementWorkerCount(c)) break retry; c = ctl.get(); // Re-read ctl if (runStateOf(c) != rs) continue retry; // else CAS failed due to workerCount change; retry inner loop } } boolean workerStarted = false; boolean workerAdded = false; Worker w = null; try { w = new Worker(firstTask); final Thread t = w.thread; if (t != null) { final ReentrantLock mainLock = this.mainLock; mainLock.lock(); try { // Recheck while holding lock. // Back out on ThreadFactory failure or if // shut down before lock acquired. int rs = runStateOf(ctl.get()); if (rs < SHUTDOWN || (rs == SHUTDOWN && firstTask == null)) { if (t.isAlive()) // precheck that t is startable throw new IllegalThreadStateException(); workers.add(w); int s = workers.size(); if (s > largestPoolSize) largestPoolSize = s; workerAdded = true; } } finally { mainLock.unlock(); } if (workerAdded) { t.start(); workerStarted = true; } } } finally { if (! workerStarted) addWorkerFailed(w); } return workerStarted; }
第一个for循环检查线程数有没有超过corePoolSize或者maximunPoolSize。过了这个for循环以后就是建立Worker的地方了
private final class Worker extends AbstractQueuedSynchronizer implements Runnable { /** Thread this worker is running in. Null if factory fails. */ final Thread thread; /** Initial task to run. Possibly null. */ Runnable firstTask; /** Per-thread task counter */ volatile long completedTasks; /** * Creates with given first task and thread from ThreadFactory. * @param firstTask the first task (null if none) */ Worker(Runnable firstTask) { setState(-1); // inhibit interrupts until runWorker this.firstTask = firstTask; this.thread = getThreadFactory().newThread(this); } public void run() { runWorker(this); } ... }
Worker 类继承自 AbstractQueuedSynchronizer 实现了 Runnable接口, AbstractQueuedSynchronizer 这个玩意特别厉害,是并发编程的核心类,因为内容很是多本文不做解析。Worker类中维护了一个Thread对象,存了当前运行的线程,还维护了一个Runnable对象(firstTask),存了当前线程须要执行的对象。再回顾addWorker方法,其实就是用传入的firstTask参数建立一个Worker对象,并使worker对象启动一个线程去执行firstTask。重点在Worker对象的run方法,调用了一个runWorker(this)方法。
final void runWorker(Worker w) { Thread wt = Thread.currentThread(); Runnable task = w.firstTask; w.firstTask = null; w.unlock(); // allow interrupts boolean completedAbruptly = true; try { while (task != null || (task = getTask()) != null) { w.lock(); // If pool is stopping, ensure thread is interrupted; // if not, ensure thread is not interrupted. This // requires a recheck in second case to deal with // shutdownNow race while clearing interrupt if ((runStateAtLeast(ctl.get(), STOP) || (Thread.interrupted() && runStateAtLeast(ctl.get(), STOP))) && !wt.isInterrupted()) wt.interrupt(); try { beforeExecute(wt, task); Throwable thrown = null; try { task.run(); } catch (RuntimeException x) { thrown = x; throw x; } catch (Error x) { thrown = x; throw x; } catch (Throwable x) { thrown = x; throw new Error(x); } finally { afterExecute(task, thrown); } } finally { task = null; w.completedTasks++; w.unlock(); } } completedAbruptly = false; } finally { processWorkerExit(w, completedAbruptly); } }
runWorker方法接受一个Worker参数,将参数里面的firstTask拿出来,而后调用 task.run() 方法直接运行这个task,运行完将task变量设置为null。而后这里有一个while循环 while (task != null || (task = getTask()) != null),当task等于null的时候调用getTask()获取任务。
private Runnable getTask() { boolean timedOut = false; // Did the last poll() time out? for (;;) { int c = ctl.get(); int rs = runStateOf(c); // Check if queue empty only if necessary. if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) { decrementWorkerCount(); return null; } int wc = workerCountOf(c); // Are workers subject to culling? boolean timed = allowCoreThreadTimeOut || wc > corePoolSize; if ((wc > maximumPoolSize || (timed && timedOut)) && (wc > 1 || workQueue.isEmpty())) { if (compareAndDecrementWorkerCount(c)) return null; continue; } try { Runnable r = timed ? workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) : workQueue.take(); if (r != null) return r; timedOut = true; } catch (InterruptedException retry) { timedOut = false; } } }
getTask()方法里面有一个死循环,boolean timed = allowCoreThreadTimeOut || wc > corePoolSize; timed变量判断wc变量是否大于corePoolSize (allowCoreThreadTimeOut 默认为 false)。而后下面有一行代码判断timed时候为ture,若是为true,调用 workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS),不然调用workQueue.take(),从等待队列中获取等待被处理的线程,而后返回出去。poll和take的区别是 当队列里面没有数据的时候poll立刻返回false,而take会堵塞当前线程直到队列里面有数据。这里解释了为何线程池可以维持线程不释放。
当设置了corePoolSize的时候,这个参数表明了可以运行的线程数,当用户执行submit方法的时候首先会去判断当前线程数有没有达到corePoolSize,若是没有达到,就建立Worker对象并启动线程执行任务,一个对象内维护一个线程,当线程数超过corePoolSize的时候,用户执行submit方法的时候只是将任务放到等待队列里面,核心线程不断从等待队列里面取出任务执行,没有任务的时候一直被堵塞住,当有任务来的时候直接取出执行,避免了不断建立线程带来的开销,以及增长了系统资源的利用率。