JavaShuo
栏目
标签
【5分钟 Paper】Continuous Control With Deep Reinforcement Learning
时间 2021-01-02
标签
顶会期刊论文阅读笔记
繁體版
原文
原文链接
论文题目:Continuous Control With Deep Reinforcement Learning 所解决的问题? 这篇文章将Deep Q-Learning运用到Deterministic Policy Gradient算法中。如果了解DPG的话,那这篇文章就是引入DQN改进了一下DPG的state value function。解决了DQN需要寻找maximizes actio
>>阅读原文<<
相关文章
1.
Continuous control with Deep Reinforcement Learning
2.
【5分钟 Paper】Playing Atari with Deep Reinforcement Learning
3.
解读continuous control with deep reinforcement learning(DDPG)
4.
【5分钟 Paper】Asynchronous Methods for Deep Reinforcement Learning
5.
【5分钟 Paper】Deep Reinforcement Learning with Double Q-learning
6.
【5分钟 Paper】Dueling Network Architectures for Deep Reinforcement Learning
7.
DDPG,CONTINUOUS CONTROL WITH DEEP REINFORCEMENT LEARNING 论文阅读
8.
Paper: Continuous Deep Q-Learning with Model-based Acceleration
9.
Paper reading: Playing Atari with Deep Reinforcement Learning
10.
PR17.10.2:Reproducibility of Benchmarked Deep Reinforcement Learning Tasks for Continuous Control
更多相关文章...
•
ASP.NET HtmlSelect Control
-
ASP.NET 教程
•
SVN分支
-
SVN 教程
•
Git五分钟教程
•
JDK13 GA发布:5大特性解读
相关标签/搜索
Deep Learning
continuous
control
reinforcement
learning
deep
paper
分钟
5分钟掌握
5分
PHP 7 新特性
Spring教程
MySQL教程
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
说说Python中的垃圾回收机制?
2.
蚂蚁金服面试分享,阿里的offer真的不难,3位朋友全部offer
3.
Spring Boot (三十一)——自定义欢迎页及favicon
4.
Spring Boot核心架构
5.
IDEA创建maven web工程
6.
在IDEA中利用maven创建java项目和web项目
7.
myeclipse新导入项目基本配置
8.
zkdash的安装和配置
9.
什么情况下会导致Python内存溢出?要如何处理?
10.
CentoOS7下vim输入中文
本站公众号
欢迎关注本站公众号,获取更多信息
相关文章
1.
Continuous control with Deep Reinforcement Learning
2.
【5分钟 Paper】Playing Atari with Deep Reinforcement Learning
3.
解读continuous control with deep reinforcement learning(DDPG)
4.
【5分钟 Paper】Asynchronous Methods for Deep Reinforcement Learning
5.
【5分钟 Paper】Deep Reinforcement Learning with Double Q-learning
6.
【5分钟 Paper】Dueling Network Architectures for Deep Reinforcement Learning
7.
DDPG,CONTINUOUS CONTROL WITH DEEP REINFORCEMENT LEARNING 论文阅读
8.
Paper: Continuous Deep Q-Learning with Model-based Acceleration
9.
Paper reading: Playing Atari with Deep Reinforcement Learning
10.
PR17.10.2:Reproducibility of Benchmarked Deep Reinforcement Learning Tasks for Continuous Control
>>更多相关文章<<