Redis中有序集合zset须要使用skiplist做为存储数据结构, 关于skiplist数据结构描述能够查询wiki, 本文主要介绍Redis实现的skiplist的细节.redis
typedef struct zskiplistNode { /*成员object对象*/ robj *obj; /*分数字段依赖此值对skiplist进行排序*/ double score; /*插入层中指向上一个元素level数组*/ struct zskiplistNode *backward; struct zskiplistLevel { /*每层中指向下一个元素指针*/ struct zskiplistNode *forward; /*距离下一个元素之间元素数量, 即forward指向的元素*/ unsigned int span; } level[]; } zskiplistNode; typedef struct zskiplist { /*跳跃表头节点和尾节点*/ struct zskiplistNode *header, *tail; /*跳跃表中元素个数*/ unsigned long length; /*跳跃表当前最大层数*/ int level; } zskiplist;
建立跳跃表过程比较简单, 初始化zskiplist数据结构, 跳跃表默认最大层数32层, 跳跃表是按score进行升序排列.数组
/*建立跳跃表*/ zskiplist *zslCreate(void) { int j; zskiplist *zsl; zsl = zmalloc(sizeof(*zsl)); zsl->level = 1; zsl->length = 0; /*初始化建立一个头节点, 初始化节点信息*/ zsl->header = zslCreateNode(ZSKIPLIST_MAXLEVEL,0,NULL); for (j = 0; j < ZSKIPLIST_MAXLEVEL; j++) { zsl->header->level[j].forward = NULL; zsl->header->level[j].span = 0; } zsl->header->backward = NULL; zsl->tail = NULL; return zsl; } /*建立一个跳跃表节点*/ zskiplistNode *zslCreateNode(int level, double score, robj *obj) { zskiplistNode *zn = zmalloc(sizeof(*zn)+level*sizeof(struct zskiplistLevel)); zn->score = score; zn->obj = obj; return zn; }
zskiplistNode *zslInsert(zskiplist *zsl, double score, robj *obj) { zskiplistNode *update[ZSKIPLIST_MAXLEVEL], *x; unsigned int rank[ZSKIPLIST_MAXLEVEL]; int i, level; redisAssert(!isnan(score)); x = zsl->header; /*从头节点开始搜索, 一层一层向下搜索, 直到直到最后一层, update数组中保存着每层应该插入的位置*/ for (i = zsl->level-1; i >= 0; i--) { rank[i] = i == (zsl->level-1) ? 0 : rank[i+1]; while (x->level[i].forward && (x->level[i].forward->score < score || (x->level[i].forward->score == score && compareStringObjects(x->level[i].forward->obj,obj) < 0))) { /*记录每层距离头部位置的距离*/ rank[i] += x->level[i].span; x = x->level[i].forward; } update[i] = x; } /* 随机一个层数, 若是随机的层数是新的层数, 则须要给update数组中新的层数赋值*/ level = zslRandomLevel(); if (level > zsl->level) { for (i = zsl->level; i < level; i++) { rank[i] = 0; /*新的一层上一个指针确定是header*/ update[i] = zsl->header; update[i]->level[i].span = zsl->length; } zsl->level = level; } /*建立新的节点插入到update数组对应的层*/ x = zslCreateNode(level,score,obj); for (i = 0; i < level; i++) { x->level[i].forward = update[i]->level[i].forward; update[i]->level[i].forward = x; /* header update[i] x update[i]->forward |-----------|-----------|-----------|-----------|-----------|-----------| |<---update[i].span---->| |<-------rank[i]------->| |<-------------------rank[0]------------------->| 更新update数组中span值和新插入元素span值, rank[0]存储的是x元素距离头部的距离, rank[i]存储的是update[i]距离头部的距离, 上面给出了示意图 */ x->level[i].span = update[i]->level[i].span - (rank[0] - rank[i]); update[i]->level[i].span = (rank[0] - rank[i]) + 1; } /* level可能小zsl->level, 无变更的元素span依次增长1*/ for (i = level; i < zsl->level; i++) { update[i]->level[i].span++; } /*上一个元素level数组, 从新赋值*/ x->backward = (update[0] == zsl->header) ? NULL : update[0]; if (x->level[0].forward) x->level[0].forward->backward = x; else /*下一个元素为空,则表示x为尾部元素*/ zsl->tail = x; zsl->length++; return x; }
排名其实就是元素在skiplist中排列的序号, 获取排名须要给出分数和成员member, 经过score查找, 匹配member成员, 时间复杂度log(N). 因为skiplist是升序排列的,所以函数返回的rank是score按升序排列的rank, 若是想获取降序rank应该是(length-rank).数据结构
unsigned long zslGetRank(zskiplist *zsl, double score, robj *o) { zskiplistNode *x; unsigned long rank = 0; int i; x = zsl->header; /*循环遍历并累加每层的span值, 获取总的排名*/ for (i = zsl->level-1; i >= 0; i--) { while (x->level[i].forward && (x->level[i].forward->score < score || (x->level[i].forward->score == score && compareStringObjects(x->level[i].forward->obj,o) <= 0))) { rank += x->level[i].span; x = x->level[i].forward; } /* 判断成员是否相等 */ if (x->obj && equalStringObjects(x->obj,o)) { /*升序排列的排名*/ return rank; } } return 0; }
/*经过排名查找元素, rank是从1开始, rank是升序排列的rank值*/ zskiplistNode* zslGetElementByRank(zskiplist *zsl, unsigned long rank) { zskiplistNode *x; unsigned long traversed = 0; int i; /*遍历每一层,并记录排名, 与待查rank比较, 相等则找到, 找不到则返回NULL*/ x = zsl->header; for (i = zsl->level-1; i >= 0; i--) { while (x->level[i].forward && (traversed + x->level[i].span) <= rank) { traversed += x->level[i].span; x = x->level[i].forward; } /*找到直接返回*/ if (traversed == rank) { return x; } } return NULL; }
删除元素须要精确匹配到分数和memberdom
/*删除一个元素*/ int zslDelete(zskiplist *zsl, double score, robj *obj) { zskiplistNode *update[ZSKIPLIST_MAXLEVEL], *x; int i; x = zsl->header; for (i = zsl->level-1; i >= 0; i--) { while (x->level[i].forward && (x->level[i].forward->score < score || (x->level[i].forward->score == score && compareStringObjects(x->level[i].forward->obj,obj) < 0))) x = x->level[i].forward; update[i] = x; } /* 因为score值可能相等, 所以须要精确匹配score和obj值 */ x = x->level[0].forward; if (x && score == x->score && equalStringObjects(x->obj,obj)) { zslDeleteNode(zsl, x, update); zslFreeNode(x); return 1; } return 0; /* not found */ } /* 具体进行删除元素所在节点*/ void zslDeleteNode(zskiplist *zsl, zskiplistNode *x, zskiplistNode **update) { int i; /*删除元素须要更新update元素的span值*/ for (i = 0; i < zsl->level; i++) { if (update[i]->level[i].forward == x) { update[i]->level[i].span += x->level[i].span - 1; update[i]->level[i].forward = x->level[i].forward; } else { update[i]->level[i].span -= 1; } } if (x->level[0].forward) { /*非尾部元素则须要重置backforward指针*/ x->level[0].forward->backward = x->backward; } else { /*删除x多是最后一个元素, 须要重置尾部指针*/ zsl->tail = x->backward; } /*删除元素位于最上层, 而且仅有此一个元素, 删除以后,须要下降跳跃表层数*/ while(zsl->level > 1 && zsl->header->level[zsl->level-1].forward == NULL) zsl->level--; zsl->length--; }