Python3 与 C# 扩展之~基础衍生

 

本文适应人群:C# or Python3 基础巩固html

代码裤子: https://github.com/lotapp/BaseCodejava

在线编程: https://mybinder.org/v2/gh/lotapp/BaseCode/masternode

在线预览:http://github.lesschina.com/python/base/ext/基础衍生.htmlpython

立刻快期末考试了,老师蜜月也回来了,因而有了一场跨季度的复习讲课了:git

1.Python基础语法扩展

1.1.if 判断条件相关

None、""、0、[]、{} ==> 假github

一、" "、[None,""]、{"":None} ==> 真算法

小明可高兴了,前几天被打击的面目全非,这几天老师回来了,又能够大发神威了,因而抢先提交demo:编程

In [1]:
# None
if None:
    print(True)
else:
    print(False)
 
False
In [2]:
# 0为False
if 0:
    print(True)
else:
    print(False)
 
False
In [3]:
# 空字符串
if "":
    print(True)
else:
    print(False)
 
False
In [4]:
# 空列表为False
if []:
    print(True)
else:
    print(False)
 
False
In [5]:
# 空字典为False
if {}:
    print(True)
else:
    print(False)
 
False
In [6]:
# 1为True
if 1:
    print(True)
else:
    print(False)
 
True
In [7]:
# 含空格
if " ":
    print(True)
else:
    print(False)
 
True
In [8]:
if [None,""]:
    print(True)
else:
    print(False)
 
True
In [9]:
if {"":None}:
    print(True)
else:
    print(False)
 
True
 

老师微带笑容的看了小明一眼,而后接着讲if的扩展api

1.2.三元表达符

eg:max = a if a > b else b数组

In [10]:
a, b = 1, 2

max = a if a > b else b

print(max)
 
2
In [11]:
a, b, c = 1, 3, 2

max = a if a > b else b
max = max if max > c else c

print(max)
 
3
In [12]:
# 上面的那个还有一种简写(不推荐)
a, b, c = 1, 3, 2

max = (a if a > b else b) if (a if a > b else b) > c else c

print(max)
 
3
 

1.2.字符串和编码

Python3.x版本中,字符串是以Unicode编码的

对于单个字符的编码,Python提供了ord()函数获取字符的整数表示,chr()函数把编码转换为对应的字符

小潘对这块有所研究,把小明按在桌上而后抢先提交demo:

In [13]:
ord('D')
Out[13]:
68
In [14]:
ord('毒')
Out[14]:
27602
In [15]:
chr(68)
Out[15]:
'D'
In [16]:
chr(27602)
Out[16]:
'毒'
In [17]:
print(ord('A'))
print(ord('Z'))

print(ord('a'))
print(ord('z'))
 
65
90
97
122
 

老师补充讲解道:

编码:encode() 解码:decode()

url相关的能够用:

urllib.parse.quote() and urllib.parse.unquote()

urllib.parse.urlencode() 能够直接对一个key-value进行url编码

In [18]:
# encode() and decode()
name="毒逆天"

name_encode=name.encode("utf-8")

print(name_encode)

print(name_encode.decode("utf-8"))
 
b'\xe6\xaf\x92\xe9\x80\x86\xe5\xa4\xa9'
毒逆天
In [19]:
# 须要导入urlib.parse

import urllib.parse
In [20]:
test_str="淡定"

# 对字符串进行url编码和解码
test_str_enode = urllib.parse.quote(test_str)

print(test_str_enode)

# urllib.parse.quote() 解码
print(urllib.parse.unquote(test_str_enode))
 
%E6%B7%A1%E5%AE%9A
淡定
In [21]:
# urlencode 能够直接对一个key-value进行编码

test_dict={"name":"毒逆天","age":23}

encode_str = urllib.parse.urlencode(test_dict)

print(encode_str)
print(urllib.parse.unquote(encode_str))
 
name=%E6%AF%92%E9%80%86%E5%A4%A9&age=23
name=毒逆天&age=23
 

1.3.值判断和地址判断

小明不乐意了,你个小潘老是抢个人风头,看完标题就刷刷的在黑板上写下了以下知识点:

is 是比较两个引用是否指向了同一个对象id()获得的地址同样则相同)

== 是比较两个对象的值是否相等

在以前讲Dict的时候提了一下可变和不可变类型:http://www.javashuo.com/article/p-ftgdkctm-g.html

Func里面又系统的说了一下:http://www.javashuo.com/article/p-obgfrmjz-g.html

对于可变不可变系列就不去复述了,下面再来几个案例看看 值判断地址判断的概念

In [22]:
################ 可变类型 ################ 
In [23]:
a=[1,2,3]
b=[1,2,3]

# id不同,那is确定不同了
print(id(a))
print(id(b))
 
139727165899464
139727165725256
In [24]:
# a和b是否指向同一个地址
a is b
Out[24]:
False
In [25]:
# a和b的值是否相同
a == b
Out[25]:
True
In [26]:
################ 开始变化了 ################ 
In [27]:
# 让a指向b的地址
a=b

# a和b的id同样了
print(id(a))
print(id(b))
 
139727165725256
139727165725256
In [28]:
# a和b是否指向同一个地址
a is b
Out[28]:
True
In [29]:
# a和b的值是否相同
a == b
Out[29]:
True
In [30]:
################ 不可变类型 ################ 
In [31]:
a=1
b=1

# id同样
print(id(a))
print(id(b))
 
94592578394656
94592578394656
In [32]:
a is b
Out[32]:
True
In [33]:
a == b
Out[33]:
True
In [34]:
# 可是你要注意,不是全部不可变类型都这样的

f1=1.2
f2=1.2

# 声明两个相同值的浮点型变量,查看它们的id,发现它们并非指向同个内存地址(这点和int类型不一样)
print(id(f1))
print(id(f2))
 
139727217917024
139727217917096
In [35]:
# 这个就不同了
# 这方面涉及Python内存管理机制,Python对int类型和较短的字符串进行了缓存
# 不管声明多少个值相同的变量,实际上都指向同个内存地址,其余的就没这福利咯~

f1 is f2
Out[35]:
False
In [36]:
f1 == f2
Out[36]:
True
 

2.Python总结之for系列

老师徐徐道来:“以前说for老是零零散散的,如今基础都讲完了,来个小汇总:”

2.1.Base

可以被for循环遍历的,就是可迭代的

For基础系:http://www.javashuo.com/article/p-dwdjxhac-g.html

In [37]:
# 相似于for(int i=0;i<5;i++)

for i in range(5):
    print(i)
 
0
1
2
3
4
In [38]:
#while循环通常经过数值是否知足来肯定循环的条件
#for循环通常是对能保存多个数据的变量,进行遍历

name="https://pan.baidu.com/s/1weaF2DGsgDzAcniRzNqfyQ#mmd"

for i in name:
    if i=='#':
        break
    print(i,end='')#另外一种写法:print("%s"%i,end="")
print('\n end ...')
 
https://pan.baidu.com/s/1weaF2DGsgDzAcniRzNqfyQ
 end ...
In [39]:
# 你指望的结果是:i = 5

for i in range(10):
    if i == 5:
        print("i = %d" % i)
else:
    print("没有找到")
 
i = 5
没有找到
In [40]:
# 当迭代的对象迭代完并为空时,位于else的子句将执行
# 而若是在for循环中含有break时则直接终止循环,并不会执行else子句
# 正确写法以下:

for i in range(10):
    if i == 5:
        print("i = %d" % i)
        break
else:
    print("没有找到")
 
i = 5
In [41]:
# 遍历一个字典

test_dict={"Name":"小明","Age":23}

for k,v in test_dict.items():
    print("key:%s,value:%s"%(k,v))
 
key:Name,value:小明
key:Age,value:23
 

2.2.列表生成式

若是下面知识点还不熟悉的,看看以前讲的~列表生成式:http://www.javashuo.com/article/p-ftgdkctm-g.html

简写list(range(1, 11)) 全写[x for x in range(1,11)]

In [42]:
list(range(1, 11))
Out[42]:
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
In [43]:
[x for x in range(1,11)]
Out[43]:
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
In [44]:
# 1~10的平方列表
[x*x for x in range(1,11)]
Out[44]:
[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
In [45]:
# 1~10之间的偶数
[x for x in range(1, 11) if x % 2 == 0]
Out[45]:
[2, 4, 6, 8, 10]
In [46]:
# 数学里面的全排列
[x + y for x in 'ABC' for y in 'AB']
Out[46]:
['AA', 'AB', 'BA', 'BB', 'CA', 'CB']
In [47]:
# 数学里面的坐标轴
[(x,y) for x in range(1,5) for y in range(1,4)]
Out[47]:
[(1, 1),
 (1, 2),
 (1, 3),
 (2, 1),
 (2, 2),
 (2, 3),
 (3, 1),
 (3, 2),
 (3, 3),
 (4, 1),
 (4, 2),
 (4, 3)]
In [48]:
# (x,y,z) 通常三个嵌套就上天了
[(x,y,z) for x in range(1,5) for y in range(1,4) for z in range(1,3)]
Out[48]:
[(1, 1, 1),
 (1, 1, 2),
 (1, 2, 1),
 (1, 2, 2),
 (1, 3, 1),
 (1, 3, 2),
 (2, 1, 1),
 (2, 1, 2),
 (2, 2, 1),
 (2, 2, 2),
 (2, 3, 1),
 (2, 3, 2),
 (3, 1, 1),
 (3, 1, 2),
 (3, 2, 1),
 (3, 2, 2),
 (3, 3, 1),
 (3, 3, 2),
 (4, 1, 1),
 (4, 1, 2),
 (4, 2, 1),
 (4, 2, 2),
 (4, 3, 1),
 (4, 3, 2)]
 

2.3.扩展

若是要对list实现相似C#或者java那样的下标循环怎么办?

这块小明又有预习,因而在提交Code的同时大声说道:

Python内置的enumerate函数能够把一个list变成索引-元素对,这样就能够在for循环中同时迭代索引和元素自己

In [49]:
for i, item in enumerate(['A', 'B', 'C']):
    print(i, item)
 
0 A
1 B
2 C
 

3.Python中赋值、浅拷贝、深拷贝

看到标题小明和小潘就楞了,老师当时没讲解啊,而后两我的眼巴巴的看着老师讲解:

官方文档:https://docs.python.org/3/library/copy.html

3.1.赋值

经过=来实现,就是把地址拷贝了一份,好比 a = b

In [50]:
a=[1,2,2]
b = a

print(id(a))
print(id(b))
 
139727165518536
139727165518536
In [51]:
# 再验证

a.append(3)

# 都增长了一个3,说明的确指向同一个内存地址
print(a)
print(b)
 
[1, 2, 2, 3]
[1, 2, 2, 3]
 

3.2.深拷贝deepcopy

导入copy模块,调用deepcopy方法

若是有嵌套引用的状况,直接递归拷贝

In [52]:
import copy

a=[1,2,2]
In [53]:
b=copy.deepcopy(a)

# 指向了不一样的内存地址
print(id(a))
print(id(b))
 
139727165899080
139727165900488
In [54]:
# 再验证一下

a.append(3)

# b不变,说明的确指向不一样的内存地址
print(a)
print(b)
 
[1, 2, 2, 3]
[1, 2, 2]
In [55]:
################ 开始变化了 ################ 
In [56]:
# 以前讲了嵌套列表,咱们来验证一下

a=[1,2,2]
b=[1,2,3,a]

c=copy.deepcopy(b)

# 发现地址都不同
print(id(b))
print(id(c))
print(id(b[3]))
print(id(c[3]))
 
139727166586248
139727165899080
139727165725256
139727165899464
In [57]:
# 直观的验证一下

a.append(666)

# 深拷贝的确是深拷贝
print(b)
print(c)
 
[1, 2, 3, [1, 2, 2, 666]]
[1, 2, 3, [1, 2, 2]]
 

3.3.浅拷贝copy

copy只是简单拷贝,若是拷贝内容里面还有引用之类的,他是无论的

In [58]:
import copy

a=[1,2,2]
In [59]:
b=copy.copy(a)

# 指向了不一样的内存地址
print(id(a))
print(id(b))
 
139727165902088
139727165850952
In [60]:
################ 开始变化了 ################ 
In [61]:
# 以前讲了嵌套列表,咱们来验证一下

a=[1,2,2]
b=[1,2,3,a]

c=copy.copy(b)

# 第一层地址不同
print(id(b))
print(id(c))
 
139727165519432
139727165902088
In [62]:
# 验证一下
b.append(111)

# 第一层指向的不一样地址
print(b)
print(c)
 
[1, 2, 3, [1, 2, 2], 111]
[1, 2, 3, [1, 2, 2]]
In [63]:
# 若是里面还有引用,那么就无论了
print(id(b[3]))
print(id(c[3]))
 
139727165725576
139727165725576
In [64]:
# 验证一下
a.append(666)

# 内部引用的确没copy新地址
print(b)
print(c)
 
[1, 2, 3, [1, 2, 2, 666], 111]
[1, 2, 3, [1, 2, 2, 666]]
 

3.4.知识扩展

若是拷贝的对象是不可变类型,无论深拷贝和浅拷贝以及赋值都是地址引用。但当拷贝的不可变对象含有引用类型时,只有深拷贝(deepcopy)会递归复制

须要注意的是:Python和Net对于值类型处理是不同的(管理方式不同致使的)

==>NET中值类型默认是深拷贝的,而对于引用类型,默认实现的是浅拷贝

In [65]:
a=(1,2,2)
b=a

print(id(a))
print(id(b))
 
139727165526520
139727165526520
In [66]:
a=(1,2,2)
b=copy.deepcopy(a)

print(id(a))
print(id(b))
 
139727165846872
139727165846872
In [67]:
a=(1,2,2)
b=copy.copy(a)

print(id(a))
print(id(b))
 
139727165526520
139727165526520
 

扩:当拷贝的不可变对象含有引用类型时:赋值和浅拷贝不会copy,而深拷贝(deepcopy)会递归复制 深拷贝.png

PS:咱们经常使用的切片至关于浅拷贝copy.copy()切片.png

4.CSharp中赋值、浅拷贝、深拷贝

小明听懂了Python的深拷贝和浅拷贝后,本着学以至用的原则,写下了C#的实现:

先声明一下,本机环境是Ubuntu + NetCore,欢迎贴Code补充

4.1.赋值

Code:https://github.com/lotapp/BaseCode/tree/master/netcore/3_Ext/deepcopy

赋值方法和Python同样,直接赋值便可

var list1 = new List<int>() { 1, 2, 2 };
var list2 = list1;
In [68]:
%%script csharp

// Python同样,直接赋值便可
var list1 = new List<int>() { 1, 2, 2 };
var list2 = list1;

// 验证一下
list1.Add(3);//咱们修改一下list1,list2也就跟着就改变了

foreach (var item in list1)
{
    Console.Write(item + " ");
}
Console.WriteLine();
foreach (var item in list2)
{
    Console.Write(item + " ");
}
 
1 2 2 3 
1 2 2 3 
 

4.2值类型默认深拷贝

NetCore深拷贝相关的官方文档 public void CopyTo (T[] array);

简单类型用最简单的方式就能实现深拷贝了:

官方的CopyTo在这里和这个效果同样,可是比较麻烦,这边就不贴了(Code里面贴了)

var list3 = new List<int>() { 1, 2, 2 };
var list4 = new List<int>(list3);

// 验证一下
list3.Add(3);
foreach (var item in list3)
{
    Console.Write(item + " ");
}
Console.WriteLine();
foreach (var item in list4)
{
    Console.Write(item + " ");
}

结果:

1 2 2 3 
1 2 2

4.3.引用类型默认浅拷贝

对于List<T>再复杂点的,上面的方式就变成浅拷贝了:(相似于Python的Copy.Copy)

官方的CopyTo在这里和这个效果同样,可是比较麻烦,这边就不贴了(Demo里面贴了)

定义一个Student

public partial class Student
{
    public string Name { get; set; }
    public int Age { get; set; }

    public override string ToString()
    {
        return $"Name:{Name},Age:{Age}";
    }
}

浅拷贝Demo:

var list5 = new List<Student>(){
    new Student { Name = "小张", Age = 22 },
    new Student { Name = "小明", Age = 23 }
    };
var p = new Student() { Name = "小潘", Age = 23 };
list5.Add(p);

// 浅拷贝一份
var list6 = new List<Student>(list5);

// 浅拷贝测试
// 咱们修改一下list5,list6没有跟着改变,说明第一层的地址的确不同
list5.Add(new Student() { Name = "小胖", Age = 24 });
// 当咱们修改小潘同窗的年龄时,你们都变了,说明真的只是浅拷贝
p.Age = 24;

foreach (var item in list5)
{
    Console.WriteLine(item);
}
Console.WriteLine("=============");
foreach (var item in list6)
{
    Console.WriteLine(item);
}

结果:

Name:小张,Age:22
Name:小明,Age:23
Name:小潘,Age:24
Name:小胖,Age:24
=============
Name:小张,Age:22
Name:小明,Age:23
Name:小潘,Age:24
 

4.4.简单方式实现深拷贝

对于List<T>的深拷贝场景,其实项目中仍是蛮常见的,那深拷贝怎么搞呢?

先来一个简单的实现方式,须要T实现ICloneable接口才行:

定义一个Person类

public partial class Person : ICloneable
{
    public string Name { get; set; }
    public int Age { get; set; }

    //实现ICloneable的Clone方法
    public object Clone()
    {
        return base.MemberwiseClone();//调用父类方法便可
    }

    public override string ToString()
    {
        return $"Name:{Name},Age:{Age}";
    }
}

List<T>定义一个扩展方法:(舒适提醒:扩展方法所在的类必须是static Class哦)

public static partial class ListExt
{
    // 只要T实现了ICloneable接口就能够了
    public static IEnumerable<T> DeepCopy<T>(this IEnumerable<T> list) where T : ICloneable
    {
        return list.Select(item => (T)item.Clone()).ToList();
    }
}

来个调用加验证:

#region 引用类型深拷贝-简单实现方式

var oldList = new List<Person>(){
    new Person(){Name="小明",Age=23},
    new Person(){Name="小张",Age=22},
};
var xiaoPan = new Person() { Name = "小潘", Age = 23 };
oldList.Add(xiaoPan);

var newList = oldList.DeepCopy();

//测试
oldList.Add(new Person() { Name = "小胖", Age = 23 });
xiaoPan.Age = 24;

foreach (var item in oldList)
{
    Console.WriteLine(item);
}
Console.WriteLine("========");
foreach (var item in newList)
{
    Console.WriteLine(item);
}

#endregion

结果:

Name:小明,Age:23
Name:小张,Age:22
Name:小潘,Age:24
Name:小胖,Age:23
========
Name:小明,Age:23
Name:小张,Age:22
Name:小潘,Age:23
 

4.5.序列化方式实现深拷贝(经常使用)

利用System.Runtime.Serialization序列化与反序列化实现深拷贝

先定义一个Teacher类(别忘记加 Serializable 的标签)

[Serializable]
public partial class Teacher
{
    public string Name { get; set; }
    public int Age { get; set; }

    public override string ToString()
    {
        return $"Name:{Name},Age:{Age}";
    }
}

添加一个扩展方法:

public static partial class ListExt
{
    // 利用System.Runtime.Serialization序列化与反序列化实现深拷贝
    public static T DeepCopy2<T>(this T obj)
    {
        using (var stream = new MemoryStream())
        {
            var formatter = new BinaryFormatter();
            formatter.Serialize(stream, obj);
            stream.Seek(0, SeekOrigin.Begin);
            return (T)formatter.Deserialize(stream);
        }
    }
}

调用:

#region 引用类型深拷贝-序列化实现

var oldTestList = new List<Teacher>(){
    new Teacher(){Name="小明",Age=23},
    new Teacher(){Name="小张",Age=22},
};
var s = new Teacher() { Name = "小潘", Age = 23 };
oldTestList.Add(s);

var newTestList = oldTestList.DeepCopy2();

//测试
oldTestList.Add(new Teacher() { Name = "小胖", Age = 23 });
s.Age = 24;

foreach (var item in oldTestList)
{
    Console.WriteLine(item);
}
Console.WriteLine("========");
foreach (var item in newTestList)
{
    Console.WriteLine(item);
}

#endregion

结果:

Name:小明,Age:23
Name:小张,Age:22
Name:小潘,Age:24
Name:小胖,Age:23
========
Name:小明,Age:23
Name:小张,Age:22
Name:小潘,Age:23

由于主要是说Python,Net只是简单提一下,这边就先到这里了

不尽兴能够看看这篇文章,讲得仍是挺全面的

咱们接着来对比学习~

 

5.Python生成器

一看到标题小明又懵圈了,可是看到你们好像都知道的样子心想道:“我是否是又睡过一节课啊?”

以前有讲列表生成式,这边说说生成器

经过列表生成式,咱们能够简单并直接的建立一个列表,可是当数据有必定的规律并且又很大的时候,使用列表就有点浪费资源了

若是列表元素能够按照某种算法推算出来,这样就没必要建立完整的list,从而节省大量的资源

5.1.简单方式

在Python中,这种一边循环一边计算的机制,称为生成器:generator

先看一个简单的生成器案例:(只要把一个列表生成式的[]改为() ,就建立了一个generator了)

In [69]:
# 列表生成式
[x for x in range(10)]
Out[69]:
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
In [70]:
# 生成器写法(Python2.x系列是用xrange)
(x for x in range(10))
Out[70]:
<generator object <genexpr> at 0x7f14c413cb48>
 

遍历方式能够用以前的for循环来遍历(推荐)

也能够用next()或者__next__()方法来遍历。【C#是用MoveNext

generator保存的是算法,每次调用next(xxx)或者__next__(),就计算出下一个元素的值,直到计算到最后一个元素

当没有更多的元素时,抛出StopIteration的异常

最新的Python3.7在这方面有所优化:https://www.python.org/dev/peps/pep-0479

In [71]:
g=(x for x in range(10))

# for来遍历(推荐)
for i in g:
    print(i)
 
0
1
2
3
4
5
6
7
8
9
In [72]:
g=(x for x in range(10))

print(next(g))
print(next(g))
print(next(g))
print(next(g))
print(next(g))
print(g.__next__()) #经过__next__也同样取下一个
print(next(g))
print(next(g))
print(next(g))
print(next(g))
print(next(g))
print(next(g))
 
0
1
2
3
4
5
6
7
8
9
 
---------------------------------------------------------------------------
StopIteration                             Traceback (most recent call last)
<ipython-input-72-9897a9148994> in <module>()
     11 print(next(g))
     12 print(next(g))
---> 13print(next(g))
     14 print(next(g))

StopIteration: 
 

5.2.yield方式

若是推算的算法比较复杂,用相似列表生成式的for循环没法实现时,还能够用函数来实现

这时候就须要用到yield了,像最经典的斐波拉契数列,此次用一波生成器来对比实现下:

In [73]:
# 递归方式:求第30个数是多少

# 一、一、二、三、五、八、1三、2一、34...
def fib(n):
    if n == 1 or n == 2:
        return 1
    else:
        return fib(n - 1) + fib(n - 2)

fib(30)
Out[73]:
832040
In [74]:
# 在讲yield方式以前先用循环实现一下

def fibona(max):
    n, a, b = 0, 0, 1
    while n < max:
        print(b)
        a, b = b, a + b
        n = n + 1

fibona(30)
 
1
1
2
3
5
8
13
21
34
55
89
144
233
377
610
987
1597
2584
4181
6765
10946
17711
28657
46368
75025
121393
196418
317811
514229
832040
In [75]:
# for循环实现

def fibona(n):
    a, b = 0, 1
    # [0,n)
    for i in range(n):
        print(b)
        a, b = b, a + b

fibona(30)
 
1
1
2
3
5
8
13
21
34
55
89
144
233
377
610
987
1597
2584
4181
6765
10946
17711
28657
46368
75025
121393
196418
317811
514229
832040
 

a, b = b, a + b 以前交换两数的时候提过

这个至关于==>

temp_tuple = (b, a + b)
a = temp_tuple[0]
b = temp_tuple[1]

要把fibona函数变成generator,只须要把print(b)改成yield b就能够了:

generator在执行过程当中,遇到yield就中断,下次又继续执行到yield停下了,一直到最后

生成器的特色:

  1. 节约内存
  2. 迭代到下一次的调用时,所使用的参数都是第一次所保留下的(全部函数调用的参数都是第一次所调用时保留的,而不是新建立的)
In [76]:
# 改为生成器比较简单,直接换输出为yield

def fibona(n):
    a, b = 0, 1
    # [0,n)
    for i in range(n):
        yield b
        a, b = b, a + b
In [77]:
# 看看是否是生成器
g = fibona(30)

g
Out[77]:
<generator object fibona at 0x7f14c40efd58>
In [78]:
# 遍历输出(基本上都会用for来遍历)
for i in g:
    print(i)
 
1
1
2
3
5
8
13
21
34
55
89
144
233
377
610
987
1597
2584
4181
6765
10946
17711
28657
46368
75025
121393
196418
317811
514229
832040
 

对于函数改为的generator来讲,遇到return语句或者执行到函数体最后一行语句,就是结束generator的循环的时候

小明总结以下:

  1. 在Python中,这种一边循环一边计算的机制称为生成器:generator

  2. 每个生成器都是一个迭代器(迭代器不必定是生成器)

  3. 若是一个函数包含yield关键字,这个函数就会变为一个生成器

  4. 生成器并不会一次返回全部结果,而是每次遇到yield关键字后返回相应结果,并保留函数当前的运行状态,等待下一次的调用

  5. 因为生成器也是一个迭代器,那么它就支持next用方法来获取下一个值(咱们平时用for来遍历它)

推荐一篇文章,总结的很全了:(yield用法总结

5.3.扩展之~send(msg)方法:

其实__next__()send()在必定意义上做用是类似的,区别是send()能够传递yield表达式的值进去

__next__()不 能传递特定的值。咱们能够看作x.__next__()x.send(None) 做用是同样的

In [79]:
# 来个案例:
def test_send(n):
    for i in range(n):
        tmp = yield i
        print(tmp)


g = test_send(5)

g
Out[79]:
<generator object test_send at 0x7f14c40efdb0>
In [80]:
# 定义一个列表
test_list = []

# 把第一次yield的值放在列表中
test_list.append(g.__next__())

# 把list传给tmp并打印(能够理解为把表达式右边的 yield i 暂时换成了 test_list)
# out的内容是yield返回的值
g.send(test_list)
 
[0]
Out[80]:
1
In [81]:
# 以防大家看不懂,来个简单案例
# 你传啥print(tmp)就给你打印啥
g.send("你好啊")
 
你好啊
Out[81]:
2
 

注意一种状况,generator刚启动的时候,要么不传,要么只能传None

解决:要么一开始send(None)要么一开始先调用一下__next()__ or next()

In [82]:
# 注意一种状况,generator刚启动的时候,要么不传,要么只能传None
def test_send(n):
    for i in range(n):
        tmp = yield i
        print(tmp)


g = test_send(5)
g.send("dog") # TypeError: can't send non-None value to a just-started generator
 
---------------------------------------------------------------------------
TypeError                                 Traceback (most recent call last)
<ipython-input-82-2e891aa5dd81> in <module>()
      7 
      8 g = test_send(5)
----> 9g.send("dog") # TypeError: can't send non-None value to a just-started generator

TypeError: can't send non-None value to a just-started generator
In [83]:
# 解决:要么一开始send(None)要么一开始先调用一下__next()__ or next()
def test_send(n):
    for i in range(n):
        tmp = yield i
        print(tmp)


g = test_send(5)
g.send(None)
Out[83]:
0
In [84]:
g.send("dog")
 
dog
Out[84]:
1
 

扩:C#在遍历generator的时候也是先调一下MoveNext方法

while (tmp.MoveNext())
{
    Console.WriteLine(tmp.Current);
}
 

5.4.扩展之~returnbreak的说明

在一个generator函数中,若是没有return则默认执行至函数完毕

若是在执行过程当中return或者break则直接抛出StopIteration终止迭代

In [85]:
# break案例
def test_send(n):
    for i in range(n):
        if i==2:
            break
        yield i

g = test_send(5)
for i in g:
    print(i)
 
0
1
In [86]:
# return案例
def test_send(n):
    for i in range(n):
        if i==2:
            return "i==2"
        yield i

g = test_send(5)
for i in g:
    print(i)
 
0
1
 

for循环调用generator时,发现拿不到generatorreturn语句的返回值

若是想要拿到返回值,必须捕获StopIteration错误,返回值包含在StopIteration的value

In [87]:
# 上面return的返回值怎么拿呢?

g = test_send(5)

while True:
    try:
        tmp = g.__next__()
        print(tmp)
    except StopIteration as ex:
        print(ex.value)
        break # 必定要加break,别忘了你在死循环里呢
 
0
1
i==2
 

5.5.扩展之~协程yield实现多任务调度

这个场景仍是很常见的,好比C#的单线程实现多任务用的就可使用yield

再好比生产消费这个经典案例:(参考

生产者生产消息后,直接经过yield跳转到消费者开始执行,待消费者执行完毕后,切换回生产者继续生产

Python对协程的支持是经过generator实现的

在generator中,咱们不但能够经过for循环来迭代,还能够不断调用__next__()获取由yield语句返回的下一个值。

由于Python的yield不但能够返回一个值,它还能够接收调用者发出的参数(经过send方法),因此就happy了

咱们举个简单的demo来看看:

In [88]:
def consumer():
    while True:
        tmp = yield
        # !None就变成真了
        if not tmp:
            return
        print("消费者:",tmp)
In [89]:
# 建立消费者
c = consumer()
# 启动消费者
c.send(None)
# 生产数据,并提交给消费者
c.send("小明")
c.send("小潘")
# 生产结束,通知消费者结束,抛出StopIteration异常
c.send(None) # 使用c.close()能够避免异常
 
消费者: 小明
消费者: 小潘
 
---------------------------------------------------------------------------
StopIteration                             Traceback (most recent call last)
<ipython-input-89-bcc0083d4089> in <module>()
      7 c.send("小潘")
      8 # 生产结束,通知消费者结束,抛出StopIteration异常
----> 9c.send(None) # 使用c.close()能够避免异常

StopIteration: 
 

执行流程

  1. 建立协程对象(消费者)后,必须使用send(None)__next__()启动
  2. 协程在执行yield后让出执行绪,等待消息
  3. 调用方发送send(msg)消息,协程恢复执行,将接收到的数据保存并执行后续流程
  4. 再次循环到yield,协程返回前面的处理结果,并再次让出执行绪
  5. 直到关闭或被引起异常

补全demo:

In [90]:
def consumer():
    status = ""
    while True:
        tmp = yield status
        if not tmp:
            print("消费者已经睡觉了...")
            return
        print("消费者:得到商品%s号..." % tmp)
        status = "ok"


def produce(c):
    # 启动消费者
    c.send(None)
    for i in range(1, 3):
        print("生产者:出产商品%s号..." % i)
        # 生产商品,并提交给消费者
        status = c.send(i)
        print("生产者:生产者消费状态: %s" % status)
    # c.send(None) 执行这个会引起StopIteration
    c.close()  # 使用close就能够避免了(手动关闭生成器函数,后面的调用会直接返回StopIteration异常)


# 建立消费者
c = consumer()
produce(c)
 
生产者:出产商品1号...
消费者:得到商品1号...
生产者:生产者消费状态: ok
生产者:出产商品2号...
消费者:得到商品2号...
生产者:生产者消费状态: ok
In [91]:
# 更多能够查看帮助文档
def test():
    yield
help(test())
 
Help on generator object:

test = class generator(object)
 |  Methods defined here:
 |  
 |  __del__(...)
 |  
 |  __getattribute__(self, name, /)
 |      Return getattr(self, name).
 |  
 |  __iter__(self, /)
 |      Implement iter(self).
 |  
 |  __next__(self, /)
 |      Implement next(self).
 |  
 |  __repr__(self, /)
 |      Return repr(self).
 |  
 |  close(...)
 |      close() -> raise GeneratorExit inside generator.
 |  
 |  send(...)
 |      send(arg) -> send 'arg' into generator,
 |      return next yielded value or raise StopIteration.
 |  
 |  throw(...)
 |      throw(typ[,val[,tb]]) -> raise exception in generator,
 |      return next yielded value or raise StopIteration.
 |  
 |  ----------------------------------------------------------------------
 |  Data descriptors defined here:
 |  
 |  gi_code
 |  
 |  gi_frame
 |  
 |  gi_running
 |  
 |  gi_yieldfrom
 |      object being iterated by yield from, or None

 

6.Python迭代器

看到迭代器小明老高兴了,心想着一会写个C#版的以为能够收获一大群眼球~

6.1.判断是否可迭代

在说迭代器前先说下可迭代(Iterable)yield基础点我):

在Python中,能经过for循环遍历的都是能够迭代的,好比 str、tuple、list、dict、set、生成器等等

也能够经过 isinstance(xxx,Iterable) 方法判断一下是否迭代:

In [92]:
from collections import Iterable
In [93]:
isinstance("mmd",Iterable)
Out[93]:
True
In [94]:
isinstance((1,2),Iterable)
Out[94]:
True
In [95]:
isinstance([],Iterable)
Out[95]:
True
In [96]:
isinstance({},Iterable)
Out[96]:
True
In [97]:
isinstance((x for x in range(10)),Iterable)
Out[97]:
True
In [98]:
isinstance(1,Iterable)
Out[98]:
False
 

6.2.判断是不是迭代器

迭代器是必定能够迭代的,怎么判断是迭代器呢?

可使用next方法的或者经过isinstance(xxx,Iterator)

In [99]:
a=[1,2,3]

next(a)
 
---------------------------------------------------------------------------
TypeError                                 Traceback (most recent call last)
<ipython-input-99-f5f8ac9a8550> in <module>()
      1 a=[1,2,3]
      2 
----> 3next(a)

TypeError: 'list' object is not an iterator
In [100]:
from collections import Iterator
In [101]:
isinstance([],Iterator)
Out[101]:
False
In [102]:
isinstance((x for x in range(10)),Iterator)
Out[102]:
True
 

6.3.IterableIterator

生成器都是Iterator对象,但list、dict、str虽然是Iterable,却不是Iterator

list、dict、strIterable变成Iterator可使用iter()函数:

In [103]:
iter(a)
Out[103]:
<list_iterator at 0x7f14c40a3da0>
In [104]:
isinstance(iter([]),Iterator)
Out[104]:
True
In [105]:
isinstance(iter({}),Iterator)
Out[105]:
True
 

Python的Iterator对象表示的是一个数据流,Iterator对象能够被next()or__next__()函数调用并不断返回下一个数据,直到没有数据时抛出StopIteration错误

能够把这个数据流看作是一个有序序列,但咱们却不能提早知道序列的长度,只能不断经过next函数实现按需计算下一个数据,因此Iterator的计算是惰性的,只有在须要返回下一个数据时它才会计算。

Iterator甚至能够表示一个无限大的数据流,而list等则不行

小明总结了一下老师讲解的知识点:

  1. 能够for循环的对象都是Iterable类型

  2. 可使用next()or__next__()函数的对象都是Iterator类型

  3. 集合数据类型如list、dict、str等是Iterable,能够经过iter()函数得到一个Iterator对象

 

7.CSharp迭代器

乘着下课的时间,小明跑到黑板前,心想:“又到了C#的时候了,看我来收播一大群眼球~”,而后开始了他的我的秀:

其实迭代器(iterator就是为了更简单的建立枚举器(enumerator)和可枚举类型(enumerator type)的方式

7.1.IEnumeratorIEnumerable

通俗话讲:

能不能foreach就看你遍历对象有没有实现IEnumerable,就说明你是否是一个可枚举类型enumerator type

public interface IEnumerable
{
    IEnumerator GetEnumerator();
}

是否是个枚举器(enumerator)就看你实现了IEnumerator接口没

public interface IEnumerator
{
    object Current { get; }

    bool MoveNext();

    void Reset();
}

最明显的区别:它们两个遍历方式不同

// 枚举器遍历
var tmp = FibonaByIEnumerator(30);
while (tmp.MoveNext())
{
    Console.WriteLine(tmp.Current);
}
// 可枚举类型遍历
foreach (var item in FibonaByIEnumerable(30))
{
    Console.WriteLine(item);
}

这个咱们在2年前就说过,这边简单提一下(官方文档)(Demo)

MyEnumerator文件:

public class MyEnumerator : IEnumerator
{
    /// <summary>
    /// 须要遍历的数组
    /// </summary>
    private string[] array;
    /// <summary>
    /// 有效数的个数
    /// </summary>
    private int count;
    public MyEnumerator(string[] array, int count)
    {
        this.array = array;
        this.count = count;
    }

    /// <summary>
    /// 当前索引(线moveNext再获取index,用-1更妥)
    /// </summary>
    private int index = -1;
    public object Current
    {
        get
        {
            return array[index];
        }
    }
    /// <summary>
    /// 移位
    /// </summary>
    /// <returns></returns>
    public bool MoveNext()
    {
        if (++index < count)
        {
            return true;
        }
        return false;
    }
    /// <summary>
    /// 重置
    /// </summary>
    public void Reset()
    {
        index = -1;
    }
}

MyArray.cs文件

public partial class MyArray
{
    /// <summary>
    /// 数组容量
    /// </summary>
    private string[] array = new string[4];
    /// <summary>
    /// 数组元素个数
    /// </summary>
    private int count = 0;
    /// <summary>
    /// 当前数组的长度
    /// </summary>
    public int Length
    {
        get
        {
            return count;
        }
    }

    /// <summary>
    /// 添加元素
    /// </summary>
    /// <param name="str"></param>
    /// <returns></returns>
    public MyArray Add(string str)
    {
        //要溢出的时候扩容
        if (count == array.Length)
        {
            string[] newArray = new string[2 * array.Length];
            array.CopyTo(newArray, 0);
            array = newArray;//array从新指向
        }
        array[count++] = str;
        return this;
    }

    /// <summary>
    /// 移除某一项
    /// </summary>
    /// <param name="i"></param>
    /// <returns></returns>
    public MyArray RemoveAt(int i)
    {
        for (int j = i; j < count - 1; j++)
        {
            array[j] = array[j + 1];
        }
        count--;//少了一个元素因此--
        return this;
    }

    /// <summary>
    /// 索引器
    /// </summary>
    /// <param name="index"></param>
    /// <returns></returns>
    public string this[int index]
    {
        get
        {
            return array[index];
        }
        set
        {
            array[index] = value;
        }
    }
}

MyArrayExt.cs文件:

public partial class MyArray: IEnumerable
{
    /// <summary>
    /// 枚举器方法
    /// </summary>
    /// <returns></returns>
    public IEnumerator GetEnumerator()
    {
        return new MyEnumerator(this.array, this.count);
    }
}

调用:

static void Main(string[] args)
{
    MyArray array = new MyArray();
    array.Add("~").Add("这").Add("是").Add("一").Add("个").Add("测").Add("试").Add("。").RemoveAt(0).RemoveAt(3).RemoveAt(6);
    for (int i = 0; i < array.Length; i++)
    {
        Console.Write(array[i]);
    }
    Console.WriteLine();
    foreach (var item in array)
    {
        Console.Write(item);
    }
}

结果:

这是一测试
这是一测试
 

7.2.yield方式

小明看着班里女生羡慕的眼神,得意的强调道:

注意一下,C#是用yield return xxx,Python是用yield xxx关键字

还记得开头说的那句话吗?(yield官方文档

其实迭代器(iterator)就是为了更简单的建立枚举器(enumerator)和可枚举类型(enumerator type)的方式

若是枚举器和可枚举类型仍是不理解(举个例子)就懂了:(从遍历方式就看出区别了)

定义一个斐波拉契函数,返回可枚举类型

/// <summary>
/// 返回一个可枚举类型
/// </summary>
public static IEnumerable<int> FibonaByIEnumerable(int n)
{
    int a = 0;
    int b = 1;
    for (int i = 0; i < n; i++)
    {
        yield return b;
        (a, b) = (b, a + b);
    }
}

调用:

foreach (var item in FibonaByIEnumerable(30))
{
    Console.WriteLine(item);
}

定义一个斐波拉契函数,返回一个枚举器

/// <summary>
/// 返回一个枚举器
/// </summary>
public static IEnumerator<int> FibonaByIEnumerator(int n)
{
    int a = 0;
    int b = 1;
    for (int i = 0; i < n; i++)
    {
        yield return b;
        (a, b) = (b, a + b);
    }
}

调用一下:

var tmp = FibonaByIEnumerator(30);
while (tmp.MoveNext())
{
    Console.WriteLine(tmp.Current);
}

利用yield轻轻松松就建立了枚举器和可枚举类型

以上面那个MyArray的案例来讲,有了yield咱们代码量大大简化:(Demo

MyArray.cs

public partial class MyArray
{
    /// <summary>
    /// 数组容量
    /// </summary>
    private string[] array = new string[4];
    /// <summary>
    /// 数组元素个数
    /// </summary>
    private int count = 0;
    /// <summary>
    /// 当前数组的长度
    /// </summary>
    public int Length
    {
        get
        {
            return count;
        }
    }

    /// <summary>
    /// 添加元素
    /// </summary>
    /// <param name="str"></param>
    /// <returns></returns>
    public MyArray Add(string str)
    {
        //要溢出的时候扩容
        if (count == array.Length)
        {
            string[] newArray = new string[2 * array.Length];
            array.CopyTo(newArray, 0);
            array = newArray;//array从新指向
        }
        array[count++] = str;
        return this;
    }

    /// <summary>
    /// 移除某一项
    /// </summary>
    /// <param name="i"></param>
    /// <returns></returns>
    public MyArray RemoveAt(int i)
    {
        for (int j = i; j < count - 1; j++)
        {
            array[j] = array[j + 1];
        }
        array[count - 1] = string.Empty;//add 干掉移除的数组
        count--;//少了一个元素因此--
        return this;
    }

    /// <summary>
    /// 索引器
    /// </summary>
    /// <param name="index"></param>
    /// <returns></returns>
    public string this[int index]
    {
        get
        {
            return array[index];
        }
        set
        {
            array[index] = value;
        }
    }
}

MyArrayExt.cs

public partial class MyArray : IEnumerable
{
    /// <summary>
    /// 枚举器方法
    /// </summary>
    /// <returns></returns>
    public IEnumerator GetEnumerator()
    {
        return MyEnumerator();
    }
    /// <summary>
    /// 经过yield快速实现
    /// </summary>
    /// <returns></returns>
    public IEnumerator<string> MyEnumerator()
    {
        foreach (var item in this.array)
        {
            yield return item;
        }
    }
}

而后就好了,MyEnumerator都不用你实现了:

MyArray array = new MyArray();
array.Add("~").Add("这").Add("是").Add("一").Add("个").Add("测").Add("试").Add("。").RemoveAt(0).RemoveAt(3).RemoveAt(6);
for (int i = 0; i < array.Length; i++)
{
    Console.Write(array[i]);
}
Console.WriteLine();
foreach (var item in array)
{
    Console.Write(item);
}

结果:

这是一测试
这是一测试

扩充一下:Python退出迭代器用yield return 或者 yield breakC#使用yield break来退出迭代

作个 demo 测试下:

public static IEnumerable<int> GetValue()
{
    for (int i = 0; i < 5; i++)
    {
        yield return i;
        if (i == 2)
        {
            yield break;
        }
    }
}

调用:

static void Main(string[] args)
{
    foreach (var item in GetValue())
    {
        Console.WriteLine(item);
    }
}

输出:

0
1
2
 

8.闭包

8.1.Python闭包

又到了上课时间,小明灰溜溜的跑回座位,听老师讲起了闭包的知识:

函数方面还有不懂的能够看以前讲的文档:Function Base

函数除了能够接受函数做为参数外,还能够把函数做为结果值返回(有点相似于C++里面的函数指针了)

来看一个可变参数求和的例子:

In [1]:
def slow_sum(*args):
    def get_sum():
        sum = 0
        for i in args:
            sum += i
        return sum

    return get_sum  # 返回函数引用地址(不加括号)

a = slow_sum(1, 2, 3, 4, 5)# 返回get_sum函数的引用
print(a)# 看看引用地址
print(a())# a() 这时候才是调用get_sum()函数
 
<function slow_sum.<locals>.get_sum at 0x7f57783b6268>
15
 

其实上面一个案例就是闭包(Closure)了,来个定义:

在函数内部再定义一个函数,而且这个函数用到了外边函数的变量(参数或者局部变量),那么将这个函数以及用到的一些变量称之为闭包

通俗点说就是:内部函数使用了外部函数做用域里的变量了,那这个内部函数和它用到的变量就是个闭包

注意:当咱们调用slow_sum()时,每次调用都会返回一个新的函数(相同的参数也同样)

In [2]:
a = slow_sum(1, 2, 3, 4)
b = slow_sum(1, 2, 3, 4)

a is b

# a()和b()的调用结果互不影响
Out[2]:
False
 

因为闭包引用了外部函数的局部变量,则外部函数的局部变量没有及时释放,因此也容易消耗内存

so ==> 除非你真正须要它,不然不要使用闭包

返回函数尽可能不要引用任何循环变量,或者后续会发生变化的变量(容易出错)

看着小明一脸懵圈的样子,老师说道:

新讲的知识点通常都不太容易快速消化,咱们再来看个闭包的好处就理解了:

好比如今咱们要根据公式来求解,以y=ax+b为例,传统方法解决:

In [3]:
# 定义一个y=ax+b的函数公式
def get_value(a, b, x):
    return a * x + b
In [4]:
# 每次调用都得传 a,b
print(get_value(2, 1, 1))
print(get_value(2, 1, 2))
print(get_value(2, 1, 3))
print(get_value(2, 1, 4))
 
3
5
7
9
 

每次调用都得额外传a、b的值

就算使用偏函数来简化也不合适(毕竟已是一个新的函数了):

In [5]:
from functools import partial

new_get_value = partial(get_value, 2, 1)

print(new_get_value(1))
print(new_get_value(2))
print(new_get_value(3))
print(new_get_value(4))
print(new_get_value(5))
 
3
5
7
9
11
 

简单总结functools.partial的做用就是:

把一个函数的某些参数设置默认值,返回一个新的函数,而后调用新函数就省得你再输入重复参数了

而这时候使用闭包就比较合适了,并且真的是封装了一个通用公式了

a,b的值你能够任意变来生成新的公式,并且公式之间还不干扰,以 y=ax²+bx+c为例:

In [6]:
def quadratic_func(a, b, c):
    """y=ax²+bx+c"""

    def get_value(x):
        return a * x * x + b * x + c

    return get_value
In [7]:
# 来个简单的:x^2+1
f1 = quadratic_func(1, 0, 1)

print(f1(0))
print(f1(1))
print(f1(2))
print(f1(3))
print(f1(4))
print(f1(5))
 
1
2
5
10
17
26
In [8]:
# 可能不太形象,咱们画个图看看:

import matplotlib.pyplot as plt # 导入matplotlib的pyplot模块
In [9]:
# 生成x和y的值
x_list = list(range(-10, 11))
y_list = [x * x + 1 for x in x_list]

print(x_list)
print(y_list)

# 画图
plt.plot(x_list, y_list)
# 显示图片
plt.show()
 
[-10, -9, -8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
[101, 82, 65, 50, 37, 26, 17, 10, 5, 2, 1, 2, 5, 10, 17, 26, 37, 50, 65, 82, 101]
 
In [10]:
# 再来个简单的:x^2-1
f2 = quadratic_func(1, 0, -1) # 相互之间不干扰

print(f2(0))
print(f2(1))
print(f2(2))
print(f2(3))
print(f2(4))
print(f2(5))
 
-1
0
3
8
15
24
 

8.2.CSharp闭包

听完闭包老师就下课了,说什么明天接着闭包讲啥装饰器的。

小明一愣一愣的,而后就屁颠的跑黑板前讲起了C#版本的闭包:

先看看怎么定义一个闭包,和Python同样,用个求和函数举例:(返回一个匿名函数

// 有返回值就用Func,没有就用Action
public static Func<int> SlowSum(params int[] args)
{
    return () =>
    {
        int sum = 0;
        foreach (var item in args)
        {
            sum += item;
        }
        return sum;
    };
}

调用:

static void Main(string[] args)
{
    var f1 = SlowSum(1, 2, 3, 4, 5);
    Console.WriteLine(f1);
    Console.WriteLine(f1());
}

结果:(从结果能够看到,f1是一个函数,等你调用f1()才会求和)

System.Func`1[System.Int32]
15

接着讲 ~ 以上面的 y=ax²+bx+c为例,C#实现:

// 以上面的 y=ax²+bx+c 为例,C#实现:
public static Func<double, double> QuadraticFunc(double a, double b, double c)
{
    return x => a * x * x + b * x + c; // 返回一个匿名函数
}

调用:

static void Main(string[] args)
{
    var func = QuadraticFunc(1, 0, 1);

    Console.WriteLine(func(0));
    Console.WriteLine(func(1));
    Console.WriteLine(func(2));
    Console.WriteLine(func(3));
    Console.WriteLine(func(4));
    Console.WriteLine(func(5));
}

结果:

1
2
5
10
17
26

Func<double,double>不理解就看看定义就懂了:public delegate TResult Func<in T, out TResult>(T arg);

这部分不是很难,简单提一下知识点便可。若是你想深究能够==> ( )

在收获满满一箩筐眼球后,小明拍拍屁股去了新开的饭店大吃一顿了...


写在最后:还有一些内容没写,估计过几天又有一篇叫 “基础拓展” 的文章了,为啥不一块儿写完呢?

其实逆天也想写完,真写完文章又被叫作长篇大论一百页了 #^_^# 行了,听取你们意见,不写那么长的文章,下次见~

相关文章
相关标签/搜索