Python (九) 协程以及数据库操做

本节内容html

  1. Gevent协程
  2. Select\Poll\Epoll异步IO与事件驱动
  3. Python链接Mysql数据库操作
  4. Paramiko SSH

 

协程

协程,又称微线程,纤程。英文名Coroutine。一句话说明什么是线程:协程是一种用户态的轻量级线程python

协程拥有本身的寄存器上下文和栈。协程调度切换时,将寄存器上下文和栈保存到其余地方,在切回来的时候,恢复先前保存的寄存器上下文和栈。所以:程序员

协程能保留上一次调用时的状态(即全部局部状态的一个特定组合),每次过程重入时,就至关于进入上一次调用的状态,换种说法:进入上一次离开时所处逻辑流的位置。sql

 

协程的好处:数据库

  • 无需线程上下文切换的开销
  • 无需原子操做锁定及同步的开销
  • 方便切换控制流,简化编程模型
  • 高并发+高扩展性+低成本:一个CPU支持上万的协程都不是问题。因此很适合用于高并发处理。

缺点:编程

  • 没法利用多核资源:协程的本质是个单线程,它不能同时将 单个CPU 的多个核用上,协程须要和进程配合才能运行在多CPU上.固然咱们平常所编写的绝大部分应用都没有这个必要,除非是cpu密集型应用。
  • 进行阻塞(Blocking)操做(如IO时)会阻塞掉整个程序

使用yield实现协程操做例子    数组

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
import time
import queue
def consumer(name):
     print ( "--->starting eating baozi..." )
     while True :
         new_baozi = yield
         print ( "[%s] is eating baozi %s" % (name,new_baozi))
         #time.sleep(1)
 
def producer():
 
     r = con.__next__()
     r = con2.__next__()
     n = 0
     while n < 5 :
         n + = 1
         con.send(n)
         con2.send(n)
         print ( "\033[32;1m[producer]\033[0m is making baozi %s" % n )
 
 
if __name__ = = '__main__' :
     con = consumer( "c1" )
     con2 = consumer( "c2" )
     p = producer()

Greenlet

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
#!/usr/bin/env python
# -*- coding:utf-8 -*-
  
  
from greenlet import greenlet
  
  
def test1():
     print 12
     gr2.switch()
     print 34
     gr2.switch()
  
  
def test2():
     print 56
     gr1.switch()
     print 78
  
gr1 = greenlet(test1)
gr2 = greenlet(test2)
gr1.switch()

  

Gevent 

Gevent 是一个第三方库,能够轻松经过gevent实现并发同步或异步编程,在gevent中用到的主要模式是Greenlet, 它是以C扩展模块形式接入Python的轻量级协程。 Greenlet所有运行在主程序操做系统进程的内部,但它们被协做式地调度。安全

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
import gevent
 
def foo():
     print ( 'Running in foo' )
     gevent.sleep( 0 )
     print ( 'Explicit context switch to foo again' )
 
def bar():
     print ( 'Explicit context to bar' )
     gevent.sleep( 0 )
     print ( 'Implicit context switch back to bar' )
 
gevent.joinall([
     gevent.spawn(foo),
     gevent.spawn(bar),
])

输出:网络

Running in foo Explicit context to bar Explicit context switch to foo again Implicit context switch back to bar 

同步与异步的性能区别 多线程

上面程序的重要部分是将task函数封装到Greenlet内部线程的gevent.spawn。 初始化的greenlet列表存放在数组threads中,此数组被传给gevent.joinall 函数,后者阻塞当前流程,并执行全部给定的greenlet。执行流程只会在 全部greenlet执行完后才会继续向下走。  

遇到IO阻塞时会自动切换任务

 

经过gevent实现单线程下的多socket并发

server side 

client side   

  

论事件驱动与异步IO

事件驱动编程是一种编程范式,这里程序的执行流由外部事件来决定。它的特色是包含一个事件循环,当外部事件发生时使用回调机制来触发相应的处理。另外两种常见的编程范式是(单线程)同步以及多线程编程。

让咱们用例子来比较和对比一下单线程、多线程以及事件驱动编程模型。下图展现了随着时间的推移,这三种模式下程序所作的工做。这个程序有3个任务须要完成,每一个任务都在等待I/O操做时阻塞自身。阻塞在I/O操做上所花费的时间已经用灰色框标示出来了。

 

在单线程同步模型中,任务按照顺序执行。若是某个任务由于I/O而阻塞,其余全部的任务都必须等待,直到它完成以后它们才能依次执行。这种明确的执 行顺序和串行化处理的行为是很容易推断得出的。若是任务之间并无互相依赖的关系,但仍然须要互相等待的话这就使得程序没必要要的下降了运行速度。

在多线程版本中,这3个任务分别在独立的线程中执行。这些线程由操做系统来管理,在多处理器系统上能够并行处理,或者在单处理器系统上交错执行。这 使得当某个线程阻塞在某个资源的同时其余线程得以继续执行。与完成相似功能的同步程序相比,这种方式更有效率,但程序员必须写代码来保护共享资源,防止其 被多个线程同时访问。多线程程序更加难以推断,由于这类程序不得不经过线程同步机制如锁、可重入函数、线程局部存储或者其余机制来处理线程安全问题,若是 实现不当就会致使出现微妙且使人痛不欲生的bug。

在事件驱动版本的程序中,3个任务交错执行,但仍然在一个单独的线程控制中。当处理I/O或者其余昂贵的操做时,注册一个回调到事件循环中,而后当 I/O操做完成时继续执行。回调描述了该如何处理某个事件。事件循环轮询全部的事件,当事件到来时将它们分配给等待处理事件的回调函数。这种方式让程序尽 可能的得以执行而不须要用到额外的线程。事件驱动型程序比多线程程序更容易推断出行为,由于程序员不须要关心线程安全问题。

当咱们面对以下的环境时,事件驱动模型一般是一个好的选择:

  1. 程序中有许多任务,并且…
  2. 任务之间高度独立(所以它们不须要互相通讯,或者等待彼此)并且…
  3. 在等待事件到来时,某些任务会阻塞。

当应用程序须要在任务间共享可变的数据时,这也是一个不错的选择,由于这里不须要采用同步处理。

网络应用程序一般都有上述这些特色,这使得它们可以很好的契合事件驱动编程模型。

 

Select\Poll\Epoll异步IO 

 

 

selectors模块

This module allows high-level and efficient I/O multiplexing, built upon the select module primitives. Users are encouraged to use this module instead, unless they want precise control over the OS-level primitives used.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
import selectors
import socket
 
sel = selectors.DefaultSelector()
 
def accept(sock, mask):
     conn, addr = sock.accept()  # Should be ready
     print ( 'accepted' , conn, 'from' , addr)
     conn.setblocking( False )
     sel.register(conn, selectors.EVENT_READ, read)
 
def read(conn, mask):
     data = conn.recv( 1000 # Should be ready
     if data:
         print ( 'echoing' , repr (data), 'to' , conn)
         conn.send(data)  # Hope it won't block
     else :
         print ( 'closing' , conn)
         sel.unregister(conn)
         conn.close()
 
sock = socket.socket()
sock.bind(( 'localhost' , 10000 ))
sock.listen( 100 )
sock.setblocking( False )
sel.register(sock, selectors.EVENT_READ, accept)
 
while True :
     events = sel.select()
     for key, mask in events:
         callback = key.data
         callback(key.fileobj, mask)
相关文章
相关标签/搜索