【Python】SQL to Pandas 系列(一)

原文地址python

介绍

SQL 是用于访问和处理数据库的标准的计算机语言。 经常使用于数据库管理系统(RDBMS)中, 这类数据库包括 MySQLSQL ServerOracle等。mysql

Pandas 是一个开源的,为 Python 提供高性能的,数据结构以及数据分析工具。sql

在熟练地使用 SQL 的同时,为知足一些的业务需求,经常须要咱们将数据提取后,再对数据进行统计分析,那应该如何使用 Pandas 达到和 SQL 同样的效果呢?数据库

下面的速查表将会逐一使用 Pandas 对常见的 SQL 语句进行映射。数据结构

本篇内容

本篇将解构下面的 SQL 查询句式, 使用 Pandas 进行实现工具

SQL 查询句式post

SELECT DISTINCT [字段] 
FROM [表] JOIN [bin] ON [链接条件] 
WHERE [过滤条件] 
GROUP BY [字段] 
HAVING [条件] 
ORDER BY [字段] DESC 
LIMIT [个数] OFFSET [个数]
复制代码

读取测试数据

import pandas as pd
import pymysql
复制代码
conn = pymysql.connect(host='127.0.0.1',
                       user='root',
                       password='12345678',
                       db='test_db')
df = pd.read_sql(sql="select * from student", con=conn)
复制代码

数据预览性能

df
复制代码
id name age sex city money
0 1 赵雷 1990-01-01 北京 20.0
1 2 钱电 1990-12-21 天津 30.0
2 3 孙风 1990-12-20 成都 2.0
3 4 李云 1990-12-06 北京 100.0
4 5 周梅 1991-12-01 成都 50.0
5 6 吴兰 1992-01-01 北京 3.0
6 7 郑竹 1989-01-01 成都 200.0
7 8 张三 2017-12-20 天津 20.0
8 9 李四 2017-12-25 西安 35.0
9 10 李四 2012-06-06 北京 40.0
10 11 赵六 2013-06-13 成都 5.0
11 12 孙七 2014-06-01 天津 210.0

SELECT

SQL测试

SELECT * FROM student

SELECT id, name, sex FROM student 
复制代码

Pandasspa

df

df[['id','name','sex']]
复制代码

DISTINCT

SQL

SELECT DISTINCT name FROM student 
复制代码

Pandas

df['name'].unique()
复制代码

COUNT & SUM & MAX & MIN & AVG

SQL

SELECT COUNT(*) FROM student

SELECT SUM(money) FROM student

SELECT id, MAX(money) FROM student

SELECT id, MIN(money) FROM student

SELECT AVG(money) FROM student
复制代码

Pandas

df['id'].count()

df['money'].sum()

df[df['money'] == df['money'].max()]

df[df['money'] == df['money'].min()]

df['money'].mean()
复制代码

描述性统计数据

In [1]: df['money'].describe()
    
Out[1]: count     12.000000
        mean      59.583333
        std       72.963825
        min        2.000000
        25%       16.250000
        50%       32.500000
        75%       62.500000
        max      210.000000
        Name: money, dtype: float64
复制代码

WHERE

例子: =

SQL

SELECT * FROM student WHERE sex = '男'
复制代码

Pandas

df[df['sex'] == ('男')]
复制代码

例子: in & not in

SQL

SELECT * FROM student WHERE id IN (2,4,6,8,10)

SELECT * FROM student WHERE id NOT IN (2,4,6,8,10)
复制代码

Pandas

df[df['id'].isin((2,4,6,8))]

df[~df['id'].isin((2,4,6,8))]
复制代码

多个条件

SQL

SELECT * FROM student WHERE sex = '男' and id IN (2,4,6,8,10)
复制代码

Pandas

df[(df['sex'] == ('男')) & (df['id'].isin((2,4,6,8)))]
复制代码

LIMIT OFFSET

SQL

SELECT * FROM student ORDER BY id DESC LIMIT 3

SELECT * FROM student ORDER BY id DESC LIMIT 3 OFFSET 2
复制代码

Pandas

df.sort_values('id',ascending=False).head(3)

df.nlargest(2 + 3, 'id').tail(3)
复制代码

SELECT & WHERE & LIMIT

SQL

SELECT * FROM student WHERE sex = '男' LIMIT 3

SELECT id, name, sex FROM student WHERE sex ='男' LIMIT 3
复制代码

Pandas

df[df['sex'] == ('男')].head(3)

df[df['sex'] == ('男')][['id','name','sex']].head(3)
复制代码

ORDER BY

SQL

SELECT * FROM student ORDER BY age

SELECT * FROM student ORDER BY age DESC
复制代码

Pandas

df.sort_values('age')

df.sort_values('age', ascending=False)
复制代码

GROUP BY

GROYP BY & COUNT

SQL

SELECT city, COUNT(*) FROM student GROUP BY city
复制代码

Pandas

df.groupby(['city']).size().to_frame('size').reset_index()
复制代码

GROYP BY & SUM

SQL

SELECT city, SUM(money) FROM student GROUP BY city
复制代码

Pandas

df.groupby(['city'])['money'].agg('sum').reset_index()
复制代码

GROUP BY & ORDER BY & COUNT

GROUP BY 单字段

SQL

SELECT city, COUNT(*) FROM student GROUP BY sex ORDER BY city
复制代码

Pandas

df.groupby(['city']).size().to_frame('size').reset_index().sort_values('city')
复制代码

GROUP BY 多字段

SQL

SELECT city, sex, COUNT(*) FROM student GROUP BY city, sex ORDER BY city
复制代码

Pandas

df.groupby(['city','sex']).size().to_frame('size').reset_index().sort_values('city')
复制代码

HAVING

SQL

SELECT city, COUNT(*) FROM student GROUP BY city HAVING count(*) > 3
复制代码

Pandas

df.groupby('city').filter(lambda x:len(x)>3).groupby('city').size().to_frame('size').reset_index()
复制代码

系列文章

【Python】当数据离开了 SQL 该怎么活下去(一)

【Python】当数据离开了 SQL 该怎么活下去(二)

相关文章
相关标签/搜索