机器学习-卷积神经网络简介(1)

一、简介 CNN由对输入进行过滤(卷积)以获得有用信息的层组成。 这些卷积层具有可以学习的参数(内核),因此可以自动调整这些过滤器以提取针对手头任务的最有用信息,而无需选择特征。 CNN最好与图像一起使用。 普通神经网络不适用于图像分类问题。 二、普通神经网络的比较 在正常的神经网络上,我们需要将图像转换为单个1d向量,然后将数据发送到完全连接的隐藏层。 在这种情况下,每个神经元每个神经元都有参数
相关文章
相关标签/搜索