You want to build a house on an empty land which reaches all buildings in the shortest amount of distance. You can only move up, down, left and right. You are given a 2D grid of values 0, 1 or 2, where:segmentfault
Each 0 marks an empty land which you can pass by freely.ide
Each 1 marks a building which you cannot pass through.ui
Each 2 marks an obstacle which you cannot pass through.idea
For example, given three buildings at (0,0), (0,4), (2,2), and an obstacle at (0,2):spa
1 - 0 - 2 - 0 - 1 | | | | | 0 - 0 - 0 - 0 - 0 | | | | | 0 - 0 - 1 - 0 - 0The point (1,2) is an ideal empty land to build a house, as the total travel distance of 3+3+1=7 is minimal. So return 7.code
Note:
There will be at least one building. If it is not possible to build such house according to the above rules, return -1.three
这道理相似于Walls ang Gates, 解决方法也应该是从building出发进行BFS,不过这里不一样的是这里须要返回最小距离和,因此咱们应该一个一个的对building的点BFS,用一个二维矩阵存每一个点到全部building的距离和,每次BFS,都更新相应的距离和。最后遍历那个距离和矩阵,找出最小值便可。rem
须要注意的是,这道题还有个条件就是empty room 必须 reach all buildings,因此咱们能够用另一个矩阵存对应empty room到building的个数,若是最终个数不等于总的building数,对应点存的距离和无效。get
time: O(kMN), space: O(MN), k表示building数量it
public class Solution { public int shortestDistance(int[][] grid) { int rows = grid.length; if (rows == 0) { return -1; } int cols = grid[0].length; // 记录到各个building距离和 int[][] dist = new int[rows][cols]; // 记录到能到达的building的数量 int[][] nums = new int[rows][cols]; int buildingNum = 0; // 从每一个building开始BFS for (int i = 0; i < rows; i++) { for (int j = 0; j < cols; j++) { if (grid[i][j] == 1) { buildingNum++; bfs(grid, i, j, dist, nums); } } } int min = Integer.MAX_VALUE; for (int i = 0; i < rows; i++) { for (int j = 0; j < cols; j++) { if (grid[i][j] == 0 && dist[i][j] != 0 && nums[i][j] == buildingNum) min = Math.min(min, dist[i][j]); } } if (min < Integer.MAX_VALUE) return min; return -1; } public void bfs(int[][] grid, int row, int col, int[][] dist, int[][] nums) { int rows = grid.length; int cols = grid[0].length; Queue<int[]> q = new LinkedList<>(); q.add(new int[]{row, col}); int[][] dirs = {{-1, 0}, {0, 1}, {1, 0}, {0, -1}}; // 记录访问过的点 boolean[][] visited = new boolean[rows][cols]; int level = 0; while (!q.isEmpty()) { level++; int size = q.size(); for (int i = 0; i < size; i++) { int[] coords = q.remove(); for (int k = 0; k < dirs.length; k++) { int x = coords[0] + dirs[k][0]; int y = coords[1] + dirs[k][1]; if (x >= 0 && x < rows && y >= 0 && y < cols && !visited[x][y] && grid[x][y] == 0) { visited[x][y] = true; dist[x][y] += level; nums[x][y]++; q.add(new int[]{x, y}); } } } } } }