神经网络在文本分类中的应用

在自然语言的文本分类中,主要使用两类模型,一类是使用传统的机器学习模型,如朴素贝叶斯,最大熵,支持向量机等,第二类就是使用神经网络模型,包括CNN和RNN。传统的机器模型在分类前首先要做特征工程,例如把文本转换成词袋,并转化为TF-IDF矩阵,然后再做分类。而使用神经网络模型可以使它自己提取特征并进行文本分类,并能获得优于传统机器学习模型的能力。 CNN模型的文本分类 CNN原来是用于对图像分类,
相关文章
相关标签/搜索