这次采用迁移学习并微调。通常的建议是:api
使用预先训练的模型进行特征提取:使用小型数据集时,一般的作法是利用在相同域中的较大数据集上训练的模型中学习的特征。这是经过实例化预训练的模型并在顶部添加彻底链接的分类器来完成的。预先训练的模型是“冻结的”,训练过程当中仅更新分类器的权重。在这种状况下,卷积基础提取了与每一个图像关联的全部特征,而您刚刚训练了一个分类器,该分类器根据给定的提取特征集肯定图像类。app
对预训练模型进行微调:为了进一步提升性能,可能须要经过微调将预训练模型的顶层从新用于新的数据集。在这种状况下,您须要调整权重,以使模型学习到特定于数据集的高级功能。一般在训练数据集很大而且与训练前的模型很是类似的原始数据集很是类似时,建议使用此技术。dom
官方示例代码用的二分类,猫狗分类。
另外迁移学习使用的是MobileNet V2 model。性能
因此此次的更改无非就是更改一下分类层,和引入ResNet便可了。学习
可能有些没有用到!fetch
from tensorflow.keras.applications import ResNet50 from tensorflow.keras import layers from tensorflow.keras.layers import Dense, GlobalAveragePooling2D from tensorflow.keras import Model from tensorflow.keras.preprocessing.image import ImageDataGenerator from tensorflow.keras.applications.resnet50 import preprocess_input from tensorflow.keras.preprocessing import image from tensorflow.keras.callbacks import EarlyStopping from tensorflow.keras.optimizers import Adam import tensorflow as tf import matplotlib.pyplot as plt import PIL import numpy as np
使用的是官方的花朵图像的分类。官方也很无语,图像分类用的是花朵图像,到迁移学习的时候又换成了狗和猫的分类。大数据
import pathlib dataset_url = "https://storage.googleapis.com/download.tensorflow.org/example_images/flower_photos.tgz" data_dir = tf.keras.utils.get_file('flower_photos', origin=dataset_url, untar=True) data_dir = pathlib.Path(data_dir)
batch_size = 32 img_height = 180 img_width = 180 train_ds = tf.keras.preprocessing.image_dataset_from_directory( data_dir, validation_split=0.2, subset="training", seed=123, image_size=(img_height, img_width), batch_size=batch_size) val_ds = tf.keras.preprocessing.image_dataset_from_directory( data_dir, validation_split=0.2, subset="validation", seed=123, image_size=(img_height, img_width), batch_size=batch_size) class_names = train_ds.class_names print(class_names) AUTOTUNE = tf.data.AUTOTUNE train_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE) val_ds = val_ds.cache().prefetch(buffer_size=AUTOTUNE)
plt.figure(figsize=(10, 10)) for images, labels in train_ds.take(1): for i in range(9): ax = plt.subplot(3, 3, i + 1) plt.imshow(images[i].numpy().astype("uint8")) plt.title(class_names[labels[i]]) plt.axis("off")
data_augmentation = tf.keras.Sequential([ tf.keras.layers.experimental.preprocessing.RandomFlip('horizontal'), tf.keras.layers.experimental.preprocessing.RandomRotation(0.2), ]) for image, _ in train_ds.take(1): plt.figure(figsize=(10, 10)) first_image = image[0] for i in range(9): ax = plt.subplot(3, 3, i + 1) augmented_image = data_augmentation(tf.expand_dims(first_image, 0)) plt.imshow(augmented_image[0] / 255) plt.axis('off') base_model = ResNet50(include_top=False, weights='imagenet',input_shape=(180,180,3)) base_model.trainable = False inputs = tf.keras.Input(shape=(180,180,3)) x = data_augmentation(inputs) x = preprocess_input(x) x = base_model(x,training=False) print(base_model.output.shape) x = GlobalAveragePooling2D()(x) y = Dense(5, activation='softmax')(x) #final layer with softmax activation model = Model(inputs=inputs, outputs=y, name="ResNet50") model.summary()
loss = tf.keras.losses.SparseCategoricalCrossentropy() metrics = tf.metrics.SparseCategoricalAccuracy() model.compile(optimizer='Adam', loss=loss, metrics=metrics) len(model.trainable_variables)
history = model.fit(train_ds, epochs=10, validation_data=val_ds)
基本上就能达到92的准确率。92/92 [==============================] - 19s 206ms/step - loss: 0.0186 - sparse_categorical_accuracy: 1.0000 - val_loss: 0.2470 - val_sparse_categorical_accuracy: 0.9292
ui
按理说数据量不大,微调可能给不了太大提高。试一下就是了。this
175层冻结前面100层google
base_model.trainable = True # Let's take a look to see how many layers are in the base model print("Number of layers in the base model: ", len(base_model.layers)) # Fine-tune from this layer onwards fine_tune_at = 100 # Freeze all the layers before the `fine_tune_at` layer for layer in base_model.layers[:fine_tune_at]: layer.trainable = False
从未微调的最后一次训练接着训练10个epochs。
loss = tf.keras.losses.SparseCategoricalCrossentropy() metrics = tf.metrics.SparseCategoricalAccuracy() model.compile(optimizer='Adam', loss=loss, metrics=metrics) len(model.trainable_variables) fine_tune_epochs = 10 total_epochs = 10 + fine_tune_epochs history_fine = model.fit(train_ds, epochs=total_epochs, initial_epoch=history.epoch[-1], validation_data=val_ds)
结果反而还下降了。92/92 [==============================] - 31s 341ms/step - loss: 0.1780 - sparse_categorical_accuracy: 0.9440 - val_loss: 0.3261 - val_sparse_categorical_accuracy: 0.9183
image_batch,label_batch = val_ds.as_numpy_iterator().next() print(label_batch) predictions = model.predict_on_batch(image_batch) for i in range(0,predictions.shape[0]): print(np.argmax(predictions[i])) prediction = np.argmax(predictions[i]) if (prediction != label_batch[i]): plt.figure(figsize=(10, 10)) plt.imshow(images[i].numpy().astype("uint8")) plt.title(class_names[label_batch[i]] + "-" + class_names[prediction]) plt.show()