二维数组做为函数参数传递剖析(C语言)(6.19更新第5种)

 

//对于一个2行13列int元素的二维数组
//函数f的形参形式
f(int daytab[2][13]) {...}

//如下两种能够忽略行数
f(int daytab[][13]) {...}

f(int (*daytab)[13]) {...}
复制代码

  甚至会有人告诉你多维数组做为参数传递能够省略第一维,其余维不能省略。然而你对这种形式并不满意:若是事先限定了二维数组的大小,函数的泛用性就要大打折扣了。由于你真正须要的,是能够处理事先未知行数和列数的二维数组的函数。固然也有文章提到相似下面的动态分配的方式,但做为函数参数传递有时不能成功,使人疑惑。程序员

int **array;//array[M][N]
array = (int **)malloc(M *sizeof(int *));
for(i=0;i<M;i++)
    array[i] = (int *)malloc(N *sizeof(int));

  本文目的是深刻剖析各个形式的二维数组,以及为了进行参数传递,如何写函数的形参表。更高维的数组能够作相似的推广。数组

  下面先进行分析,文中讨论的地址空间是虚拟地址空间,是程序员看到的地址空间,不是实际的物理地址空间。app

 


 

1.基本形式:二维数组在栈上分配,各行地址空间连续,函数参数使用文首提到的3种形式函数

  最初接触二维数组时,可能只是在main()或某个函数里进行声明,而后直接使用:this

复制代码
    ...
    int array[M][N];
  //array[][N] ={{...},...,{...}}; is ok
  //array[][] = {{...},...,{...}}; is wrong
 
 
 
 
   ...
//使用array[m][n]

复制代码

  这种分配是在栈上进行的,可以保证全部元素的地址空间连续。这样,array[i][j] 和 *(*(array +i) +j)是同样的,程序是知道array+i的i实际上偏移了i*N个单位,这也致使了在二维数组array[3][3]中,使用下标array[2][1]和array[1][4]是访问的同一个元素,尽管后者的下标对于一个3*3矩阵来讲是非法的,但这并不影响访问。spa

  这种形式,不管是数组定义仍是函数都不够泛用,两个维度在编译前就定好了,惟一能够作的就是把维度M、N声明为宏或者枚举类型,但这仍不能避免每次修改后都要从新编译。.net


 

2.数组传参形式:二维数组在栈上分配,各行地址空间连续,函数参数使用指针形式指针

  当把这种二维数组的指针直接做为参数传递时,数组名退化为指针,函数并不知道数组的列数,N对它来讲是不可见的,即便使用*(*(array +i) +j),第一层解引用失败。这时,编译器会报warning,运行生成的文件会发生segment fault。那么,为了指导这个函数如何解引用,也就是人为地解引用,须要把这个二维数组的首元素地址传给函数,因而就变成了下面的形式:code

复制代码
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
int func(int *array, int m, int n) {
    int i,j;
    for(i=0;i<m;i++) {
        for(j=0;j<n;j++)
            printf("\t%d", *(array +i*n +j));
        printf("\n");
    }
    return 0;
}

int main(int argc,char** argv) {
    int m=3,n=3,i;
    int array[][3] = {{1,2,3},{4,5,6},{7,8,9}};
    func(*array,m,n);
    return 0;
}
复制代码

  也能够写成blog

复制代码
int fun(int *array,int m,int n) {
    int i,j;
    for(i=0;i<m;i++)
        for(j=0;j<n;j++)
            printf("%d ", *((int*)array + n*i + j));
    return 0;
}
int main() {
    int array[3][3] = {
        {1,2,3},
        {4,5,6},
        {7,8,9}
    };
    fun((int *)array,3,3);
    return 0;
}
复制代码

  可是意图没有上一种清晰,并不推荐。

  你可能会问,为何下面的不行?缘由其实和上面提到的同样,第一次解引用时,函数并不知道数组的列数,从而致使失败。准确的说,是由于数组实际类型是int [3][3],在做为右值时能够被转化为int (*)[3],它们都和int **不一样,天然不可用。(感谢garbageMan在回复中指出)

复制代码
int func(int **array, int m, int n) {
    ...
    printf("\t%d", *(*array +i*n +j));
    ...
}

int main() {
  int array[3][3] = {
        {1,2,3},
        {4,5,6},
        {7,8,9}
    };
    ... 
    func(array,3,3);
  ... 
}
复制代码

 


 

3.动态数组形式:二维数组在堆上分配,各行地址空间不必定连续,函数参数使用指针形式

  第2种虽然函数参数的限定下降了,但仍须要在栈上预先分配必定大小的二维数组,程序总体并非彻底的泛用。为了进一步提升泛用性,把二维数组空间的分配也动态化,使用malloc()在堆上分配空间,重复一下前言中的方式以下:

int **array;
array = (int **)malloc(m *sizeof(int *));
for(i=0;i<M;i++)
    array[i] = (int *)malloc(n *sizeof(int));

  这时,在分配空间的做用域里,对0<=i<M,0<=j<N,array[i][j]的访问彻底没有问题。那么,对应地,函数写做

int func(int **array,int m,int n) {
    ...
    printf("%d ", *(*(array+i)+j));
    ...
}

  值得注意的是,虽然malloc()每次分配的空间在地址上是连续的,可是屡次malloc()分配的空间之间并不必定是连续的,这与在栈上分配的二维矩阵有着根本的不一样,对于二维数组array[3][3],不能再用array[1][4]来访问array[2][1]了,前者地址越界。


 

4.折中形式:用堆上分配的一维数组表示二维数组,函数参数使用指针形式

  用一维数组来实现二维数组,是一种折中方案,可是很好理解,也不易出错。这样分配的数组空间是连续的。使用时须要把两维下标转化为一维下标。

复制代码
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
int func(int *array, int m, int n) {
    int i,j;
    for(i=0;i<m;i++) {
        for(j=0;j<n;j++)
            printf("\t%d",*(array+i*n+j));
        printf("\n");
    }
    return 0;
}

int main(int argc,char** argv) {
    int m,n,i;
    int *array;
    assert(argc == 3);
    m = atoi(argv[1]);
    n = atoi(argv[2]);
    array = (int*)malloc(m*n*sizeof(int));
    for(i=0;i<m*n;i++)
        array[i] = i;
    func(array,m,n);
    return 0;
}
复制代码

 


 5.较新的编译器:用栈上分配的直到执行时才肯定大小的二维数组

  C90不支持这种形式,C99支持,所以一些较新的编译器能够对下面的代码进行执行。注意print()的参数顺序不能改变。

复制代码
void print(int x, int y, int a[x][y]){
    printf("\n");
    int i, j;
    for(i = 0; i < x; i++){
        for(j = 0; j < y; j++)
            printf("%d     ", a[i][j]);
        printf("\n");
    }
}

// Function to initialize the two-dimensional array
void init_2d(int *a, int x, int y){
    int i, j;
    for(i = 0; i < x; i++){
        for(j = 0; j < y; j++){
            a[i*y + j] = i + j;
        }
        printf("\n");
    }
}

int main(){
    int m , n ;
    scanf("%d %d",&m,&n);
    int a[m][n];  // a two dimensional whose size has been defined using variables
    init_2d(a, m, n);
    print(m, n, a);
}
复制代码

  这段代码出自http://stackoverflow.com/questions/17181577/two-dimensional-arrays-in-c

  (2013.7.28更新)

   另外,这种分配方式仍然是在栈上,相关讨论可见于http://bbs.csdn.net/topics/90350681

  

小结

    • 其实所谓的二维数组,在K&R上只是指预先分配好大小的形如int a[M][M]这样的数组,它存在于栈上;而实际使用的在堆空间利用malloc动态分配空间的并非这种,只是用的人多了,把后者叫成二维数组了(我不认为把后者也称为二维数组是标准的说法)。再加上咱们常常用它来处理矩阵,“标准的”二维数组、“动态的”“二维数组”、矩阵这三个概念就混在了一块儿。矩阵是能够用这两种二维数组表示的,而对于这两种不一样的二维数组,函数传参的方式也不彻底相同,不能随意混用。
    • C99对于多维数组的描述:

      If E is an n -dimensional array ( n ≥ 2) with dimensions i × j × ... × k , then E (used as other than an lvalue) is converted to a pointer to an ( n − 1)-dimensional array with dimensions j × ... × k . If the unary * operator is applied to this pointer explicitly, or implicitly as a result of subscripting, the result is the pointed-to ( n − 1)-dimensional array which itself is converted into a pointer if used as other than an lvalue. It follows from this
      that arrays are stored in row-major order (last subscript varies fastest).

    • 栈上分配的二维数组数组名int array[3][3]的真实类型是int [ ][ ],在做为右值时才被转化为(int *array)[N] (感谢 garbageMan指出),和int **是不一样的。把前者进行强制转换为后者,在函数中对元素操做也会致使段错误,下面用图来讲明两者区别:
相关文章
相关标签/搜索