出现次数最多的k个数 Top K Frequent Words

问题:spa

Given a non-empty list of words, return the k most frequent elements.code

Your answer should be sorted by frequency from highest to lowest. If two words have the same frequency, then the word with the lower alphabetical order comes first.排序

Example 1:element

Input: ["i", "love", "leetcode", "i", "love", "coding"], k = 2
Output: ["i", "love"]
Explanation: "i" and "love" are the two most frequent words.
    Note that "i" comes before "love" due to a lower alphabetical order.

Example 2:leetcode

Input: ["the", "day", "is", "sunny", "the", "the", "the", "sunny", "is", "is"], k = 4
Output: ["the", "is", "sunny", "day"]
Explanation: "the", "is", "sunny" and "day" are the four most frequent words,
    with the number of occurrence being 4, 3, 2 and 1 respectively.

Note:get

  1. You may assume k is always valid, 1 ≤ k ≤ number of unique elements.
  2. Input words contain only lowercase letters.

Follow up:it

  1. Try to solve it in O(n log k) time and O(n) extra space.

解决:io

①  用map,创建每一个单词和其出现次数的映射,而后借助PriorityQueue进行自定义的排序,class

class Solution {//108ms
    public List<String> topKFrequent(String[] words, int k) {
        List<String> res = new ArrayList<>();
        Map<String,Integer> map = new HashMap<>();//单词与出现次数的映射
        for (String word : words){
            map.put(word,map.getOrDefault(word,0) + 1);
        }
        PriorityQueue<Map.Entry<String,Integer>> priorityQueue =
                new PriorityQueue<>((a,b) -> (a.getValue() == b.getValue() ? b.getKey().compareTo(a.getKey()) : a.getValue() - b.getValue()));//首先将单词按照出现次数由大到小排序,若是次数相同,则按字典序排序

        for (Map.Entry<String,Integer> entry : map.entrySet()){
            priorityQueue.offer(entry);
            if (priorityQueue.size() > k){
                priorityQueue.poll();
            }
        }
        while (! priorityQueue.isEmpty()){
            res.add(0,priorityQueue.poll().getKey());
        }
        return res;
    }
}coding

② 根据单词出现的次数进行桶排序。

class Solution { //24ms
    public List<String> topKFrequent(String[] words, int k) {
        List<String> res = new ArrayList<>();
        Map<String,Integer> map = new HashMap<>();
        List<String>[] bucket = new List[words.length + 1];
        for (String word : words){
            map.put(word,map.getOrDefault(word,0) + 1);
        }
        for (String key : map.keySet()){
            int count = map.get(key);
            if (bucket[count] == null){
                bucket[count] = new ArrayList<>();
            }
            bucket[count].add(key);
        }
        for (int j = bucket.length - 1;j >= 0 && res.size() < k;j --){
            if (bucket[j] != null){
                Collections.sort(bucket[j]);
                res.addAll(bucket[j]);
            }
        }
        return res.subList(0,k);//     } }

相关文章
相关标签/搜索