立刻就要过年了,还在岗位上坚守“swimming”的小伙伴们顶住。博主给你们带来一篇线程池的基本使用解解闷。java
一、减小线程建立与切换的开销
编程
二、控制线程的数量
设计模式
重复利用有限的线程
缓存
其实经常使用Java线程池本质上都是由ThreadPoolExecutor
或者ForkJoinPool
生成的,只是其根据构造函数传入不一样的实参来实例化相应线程池而已。并发
Executors
是一个线程池工厂类,该工厂类包含以下集合静态工厂方法来建立线程池:dom
newFixedThreadPool()
:建立一个可重用的、具备固定线程数的线程池newSingleThreadExecutor()
:建立只有一个线程的线程池newCachedThreadPool()
:建立一个具备缓存功能的线程池newWorkStealingPool()
:建立持有足够线程的线程池来支持给定的并行级别的线程池newScheduledThreadPool()
:建立具备指定线程数的线程池,它能够在指定延迟后执行任务线程对设计模式有了解过的同窗都会知道,咱们尽可能面向接口编程,这样对程序的灵活性是很是友好的。Java线程池也采用了面向接口编程的思想,能够看到ThreadPoolExecutor
和ForkJoinPool
全部都是ExecutorService
接口的实现类。在ExecutorService
接口中定义了一些经常使用的方法,而后再各类线程池中均可以使用ExecutorService
接口中定义的方法,经常使用的方法有以下几个:ide
向线程池提交线程
Future<?> submit()
:将一个Runnable对象交给指定的线程池,线程池将在有空闲线程时执行Runnable对象表明的任务,该方法既能接收Runnable对象也能接收Callable对象,这就意味着sumbit()方法能够有返回值。void execute(Runnable command)
:只能接收Runnable对象,意味着该方法没有返回值。关闭线程池
void shutdown()
:阻止新来的任务提交,对已经提交了的任务不会产生任何影响。(等待全部的线程执行完毕才关闭)List<Runnable> shutdownNow()
: 阻止新来的任务提交,同时会中断当前正在运行的线程,另外它还将workQueue中的任务给移除,并将这些任务添加到列表中进行返回。(立马关闭)检查线程池的状态
boolean isShutdown()
:调用shutdown()或shutdownNow()方法后返回为true。boolean isTerminated()
:当调用shutdown()方法后,而且全部提交的任务完成后返回为true;当调用shutdownNow()方法后,成功中止后返回为true。线程池中的线程数目是固定的,无论你来了多少的任务。函数
示例代码性能
public class MyFixThreadPool {
public static void main(String[] args) throws InterruptedException {
// 建立一个线程数固定为5的线程池
ExecutorService service = Executors.newFixedThreadPool(5);
System.out.println("初始线程池状态:" + service);
for (int i = 0; i < 6; i++) {
service.execute(() -> {
try {
TimeUnit.MILLISECONDS.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(Thread.currentThread().getName());
});
}
System.out.println("线程提交完毕以后线程池状态:" + service);
service.shutdown();//会等待全部的线程执行完毕才关闭,shutdownNow:立马关闭
System.out.println("是否所有线程已经执行完毕:" + service.isTerminated());//全部的任务执行完了,就会返回true
System.out.println("是否已经执行shutdown()" + service.isShutdown());
System.out.println("执行完shutdown()以后线程池的状态:" + service);
TimeUnit.SECONDS.sleep(5);
System.out.println("5秒钟事后,是否所有线程已经执行完毕:" + service.isTerminated());
System.out.println("5秒钟事后,是否已经执行shutdown()" + service.isShutdown());
System.out.println("5秒钟事后,线程池状态:" + service);
}
}
复制代码
运行结果:this
初始线程池状态:[Running, pool size = 0, active threads = 0, queued tasks = 0, completed tasks = 0]
线程提交完毕以后线程池状态:[Running, pool size = 5, active threads = 5, queued tasks = 1, completed tasks = 0]
是否所有线程已经执行完毕:false
是否已经执行shutdown():true
执行完shutdown()以后线程池的状态:[Shutting down, pool size = 5, active threads = 5, queued tasks = 1, completed tasks = 0]
pool-1-thread-2
pool-1-thread-1
pool-1-thread-4
pool-1-thread-5
pool-1-thread-3
pool-1-thread-2
5秒钟事后,是否所有线程已经执行完毕:true
5秒钟事后,是否已经执行shutdown():true
5秒钟事后,线程池状态:[Terminated, pool size = 0, active threads = 0, queued tasks = 0, completed tasks = 6]
程序分析
Running
状态了,可是pool size
(线程池线程的数量)、active threads
(当前活跃线程) queued tasks
(当前排队线程)、completed tasks
(已完成的任务数)都是0pool size = 5
:由于咱们建立的是一个固定线程数为5的线程池(注意:若是这个时候咱们只提交了3个任务,那么pool size = 3
,说明线程池也是经过懒加载的方式去建立线程)。active threads = 5
:虽然咱们向线程池提交了6个任务,可是线程池的固定大小为5,因此活跃线程只有5个queued tasks = 1
:虽然咱们向线程池提交了6个任务,可是线程池的固定大小为5,只能有5个活跃线程同时工做,因此有一个任务在等待shutdown()
的时候,因为任务尚未所有执行完毕,因此isTerminated()
返回false
,shutdown()
返回true,而线程池的状态会由Running
变为Shutting down
pool-1-thread-2
执行了两次任务,证实线程池中的线程确实是重复利用的。isTerminated()
返回true
,shutdown()
返回true
,证实全部的任务都执行完了,线程池也关闭了,咱们再次检查线程池的状态[Terminated, pool size = 0, active threads = 0, queued tasks = 0, completed tasks = 6]
,状态已经处于Terminated
了,而后已完成的任务显示为6从头至尾整个线程池都只有一个线程在工做。
实例代码
public class SingleThreadPool {
public static void main(String[] args) {
ExecutorService service = Executors.newSingleThreadExecutor();
for (int i = 0; i < 5; i++) {
final int j = i;
service.execute(() -> {
System.out.println(j + " " + Thread.currentThread().getName());
});
}
}
}
复制代码
运行结果
0 pool-1-thread-1 1 pool-1-thread-1 2 pool-1-thread-1 3 pool-1-thread-1 4 pool-1-thread-1
程序分析 能够看到只有pool-1-thread-1
一个线程在工做。
来多少任务,就建立多少线程(前提是没有空闲的线程在等待执行任务,不然仍是会复用以前旧(缓存)的线程),直接你电脑能支撑的线程数的极限为止。
实例代码
public class CachePool {
public static void main(String[] args) throws InterruptedException {
ExecutorService service = Executors.newCachedThreadPool();
System.out.println("初始线程池状态:" + service);
for (int i = 0; i < 12; i++) {
service.execute(() -> {
try {
TimeUnit.MILLISECONDS.sleep(500);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(Thread.currentThread().getName());
});
}
System.out.println("线程提交完毕以后线程池状态:" + service);
TimeUnit.SECONDS.sleep(50);
System.out.println("50秒后线程池状态:" + service);
TimeUnit.SECONDS.sleep(30);
System.out.println("80秒后线程池状态:" + service);
}
}
复制代码
运行结果
初始线程池状态:[Running, pool size = 0, active threads = 0, queued tasks = 0, completed tasks = 0]
线程提交完毕以后线程池状态:[Running, pool size = 12, active threads = 12, queued tasks = 0, completed tasks = 0]
pool-1-thread-3
pool-1-thread-4
pool-1-thread-1
pool-1-thread-2
pool-1-thread-5
pool-1-thread-8
pool-1-thread-9
pool-1-thread-12
pool-1-thread-7
pool-1-thread-6
pool-1-thread-11
pool-1-thread-10
50秒后线程池状态:[Running, pool size = 12, active threads = 0, queued tasks = 0, completed tasks = 12]
80秒后线程池状态:[Running, pool size = 0, active threads = 0, queued tasks = 0, completed tasks = 12]
程序分析
能够在指定延迟后或周期性地执行线程任务的线程池。
ScheduledThreadPoolExecutor
newScheduledThreadPool()
方法返回的实际上是一个ScheduledThreadPoolExecutor
对象,ScheduledThreadPoolExecutor
定义以下:public class ScheduledThreadPoolExecutor extends ThreadPoolExecutor implements ScheduledExecutorService {
复制代码
ThreadPoolExecutor
并实现了ScheduledExecutorService
接口,而ScheduledExecutorService
也是继承了ExecutorService
接口,因此咱们也能够像使用以前的线程池对象同样使用,只不过是该对象会额外多了一些方法用于控制延迟与周期:
public <V> ScheduledFuture<V> schedule(Callable<V> callable,long delay, TimeUnit unit)
:指定callable任务将在delay延迟后执行public ScheduledFuture<?> scheduleAtFixedRate(Runnable command,long initialDelay,long period,TimeUnit unit)
:指定的command任务将在delay延迟后执行,并且已设定频率重复执行。(一开始并不会执行)public ScheduledFuture<?> scheduleWithFixedDelay(Runnable command,ong initialDelay,long delay,TimeUnit unit)
:建立并执行一个在给定初始延迟后首期启用的按期操做,随后在每个执行终止和下一次执行开始之间都存在给定的延迟。示例代码
下面代码每500毫秒打印一次当前线程名称以及一个随机数字。
public class MyScheduledPool {
public static void main(String[] args) {
ScheduledExecutorService service = Executors.newScheduledThreadPool(4);
service.scheduleAtFixedRate(() -> {
System.out.println(Thread.currentThread().getName() + new Random().nextInt(1000));
}, 0, 500, TimeUnit.MILLISECONDS);
}
}
复制代码
每一个线程维护着本身的队列,执行完本身的任务以后,会去主动执行其余线程队列中的任务。
示例代码
public class MyWorkStealingPool {
public static void main(String[] args) throws IOException {
ExecutorService service = Executors.newWorkStealingPool(4);
System.out.println("cpu核心:" + Runtime.getRuntime().availableProcessors());
service.execute(new R(1000));
service.execute(new R(2000));
service.execute(new R(2000));
service.execute(new R(2000));
service.execute(new R(2000));
//因为产生的是精灵线程(守护线程、后台线程),主线程不阻塞的话,看不到输出
System.in.read();
}
static class R implements Runnable {
int time;
R(int time) {
this.time = time;
}
@Override
public void run() {
try {
TimeUnit.MILLISECONDS.sleep(time);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(time + " " + Thread.currentThread().getName());
}
}
}
复制代码
运行结果
cpu核心:4 1000 ForkJoinPool-1-worker-1 2000 ForkJoinPool-1-worker-0 2000 ForkJoinPool-1-worker-3 2000 ForkJoinPool-1-worker-2 2000 ForkJoinPool-1-worker-1
程序分析 ForkJoinPool-1-worker-1
任务的执行时间是1秒,它会最早执行完毕,而后它会去主动执行其余线程队列中的任务。
ForkJoinPool
能够将一个任务拆分红多个“小任务”并行计算,再把多个“小任务”的结果合并成总的计算结果。ForkJoinPool
提供了以下几个方法用于建立ForkJoinPool
实例对象:
ForkJoinPool(int parallelism)
:建立一个包含parallelism个并行线程的ForkJoinPool
,parallelism的默认值为Runtime.getRuntime().availableProcessors()
方法的返回值ForkJoinPool commonPool()
:该方法返回一个通用池,通用池的运行状态不会受shutdown()
或shutdownNow()
方法的影响。建立了ForkJoinPool
示例以后,就能够调用ForkJoinPool
的submit(ForkJoinTask task)
或invoke(ForkJoinTask task)
方法来执行指定任务了。其中ForkJoinTask
(实现了Future接口)表明一个能够并行、合并的任务。ForkJoinTask
是一个抽象类,他还有两个抽象子类:RecursiveAction
和RecursiveTask
。其中RecursiveTask
表明有返回值的任务,而RecursiveAction
表明没有返回值的任务。
示例代码
下面代码演示了使用ForkJoinPool
对1000000个随机整数进行求和。
public class MyForkJoinPool {
static int[] nums = new int[1000000];
static final int MAX_NUM = 50000;
static Random random = new Random();
static {
for (int i = 0; i < nums.length; i++) {
nums[i] = random.nextInt(1000);
}
System.out.println(Arrays.stream(nums).sum());
}
// static class AddTask extends RecursiveAction {
//
// int start, end;
//
// AddTask(int start, int end) {
// this.start = start;
// this.end = end;
// }
//
// @Override
// protected void compute() {
// if (end - start <= MAX_NUM) {
// long sum = 0L;
// for (int i = 0; i < end; i++) sum += nums[i];
// System.out.println("from:" + start + " to:" + end + " = " + sum);
// } else {
// int middle = start + (end - start) / 2;
//
// AddTask subTask1 = new AddTask(start, middle);
// AddTask subTask2 = new AddTask(middle, end);
// subTask1.fork();
// subTask2.fork();
// }
// }
// }
static class AddTask extends RecursiveTask<Long> {
int start, end;
AddTask(int start, int end) {
this.start = start;
this.end = end;
}
@Override
protected Long compute() {
// 当end与start之间的差大于MAX_NUM,将大任务分解成两个“小任务”
if (end - start <= MAX_NUM) {
long sum = 0L;
for (int i = start; i < end; i++) sum += nums[i];
return sum;
} else {
int middle = start + (end - start) / 2;
AddTask subTask1 = new AddTask(start, middle);
AddTask subTask2 = new AddTask(middle, end);
// 并行执行两个“小任务”
subTask1.fork();
subTask2.fork();
// 把两个“小任务”累加的结果合并起来
return subTask1.join() + subTask2.join();
}
}
}
public static void main(String[] args) throws IOException {
ForkJoinPool forkJoinPool = new ForkJoinPool();
AddTask task = new AddTask(0, nums.length);
forkJoinPool.execute(task);
long result = task.join();
System.out.println(result);
forkJoinPool.shutdown();
}
}
复制代码
上面咱们说到过:其实经常使用Java线程池都是由
ThreadPoolExecutor
或者ForkJoinPool
两个类生成的,只是其根据构造函数传入不一样的实参来生成相应线程池而已。那咱们如今一块儿来看看Executors中几个建立线程池对象的静态方法相关的源码:
ThreadPoolExecutor构造函数原型
public ThreadPoolExecutor(int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit unit, BlockingQueue<Runnable> workQueue) {
复制代码
参数说明
corePoolSize
:核心运行的poolSize,也就是当超过这个范围的时候,就须要将新的Runnable放入到等待队列workQueue中了。maximumPoolSize
:线程池维护线程的最大数量,当大于了这个值就会将任务由一个丢弃处理机制来处理(固然也存在永远不丢弃任务的线程池,具体得看策略)。keepAliveTime
:线程空闲时的存活时间(当线程数大于corePoolSize时该参数才有效)[java doc
中的是这样写的 :when the number of threads is greater than the core, this is the maximum time that excess idle threads will wait for new tasks before terminating.]unit
:keepAliveTime的单位。workQueue
:用来保存等待被执行的任务的阻塞队列,且任务必须实现Runable接口。执行任务的过程
newFixedThreadPool
poolSize 和 maximumPoolSize 相等,使用无界队列存储,不管来多少任务,队列都能塞的下,因此线程池中的线程数老是 poolSize。
public static ExecutorService newFixedThreadPool(int nThreads) {
return new ThreadPoolExecutor(nThreads, nThreads,
0L, TimeUnit.MILLISECONDS,
new LinkedBlockingQueue<Runnable>());
}
复制代码
newSingleThreadExecutor
poolSize 和 maximumPoolSize 都为1,使用无界队列存储,不管来多少任务,队列都能塞的下,因此线程池中的线程数老是 1。
public static ExecutorService newSingleThreadExecutor() {
return new FinalizableDelegatedExecutorService
(new ThreadPoolExecutor(1, 1,
0L, TimeUnit.MILLISECONDS,
new LinkedBlockingQueue<Runnable>()));
}
复制代码
newCachedThreadPool
poolSize 为 0,来一个任务直接扔到队列中,使用SynchronousQueue存储(没有容量的队列),因此来来一个任务就得新建一个线程,maximumPoolSize 为 Integer.MAX_VALUE,能够当作是容许建立无限的线程。
public static ExecutorService newCachedThreadPool() {
return new ThreadPoolExecutor(0, Integer.MAX_VALUE,
60L, TimeUnit.SECONDS,
new SynchronousQueue<Runnable>());
}
复制代码
newScheduledThreadPool
public ThreadPoolExecutor(int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit unit, BlockingQueue<Runnable> workQueue) {
this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
Executors.defaultThreadFactory(), defaultHandler);
}
复制代码
newWorkStealingPool
public static ExecutorService newWorkStealingPool(int parallelism) {
return new ForkJoinPool
(parallelism,
ForkJoinPool.defaultForkJoinWorkerThreadFactory,
null, true);
}
复制代码
以为文章写得不错的朋友能够点赞、转发、加关注呀!大家的支持就是我最大的动力,笔芯!