浅析几种线程安全模型

线程编程一直是老生常谈的问题,在Java中,随着JDK的逐渐发展,JDK提供给咱们的并发模型也愈来愈多,本文摘取三例使用不一样原理的模型,分析其大体原理。node

COW之CopyOnWriteArrayList

cow是copy-on-write的简写,这种模型来源于linux系统fork命令,Java中一种使用cow模型来实现的并发类是CopyOnWriteArrayList。相比于Vector,它的读操做是无需加锁的:linux

1
2
3
public E get( int index) {
return (E) elements[index];
}

之因此有如此神奇功效,其采起的是空间换取时间的方法,查看其add方法:算法

1
2
3
4
5
6
7
public synchronized boolean add(E e) {
Object[] newElements = new Object[elements.length + 1 ];
System.arraycopy(elements, 0 , newElements, 0 , elements.length);
newElements[elements.length] = e;
elements = newElements;
return true ;
}

咱们注意到,CopyOnWriteArrayList的add方法是须要加锁的,但其内部并无直接对elements数组作操做,而是先copy一份当前的数据到一个新的数组,而后对新的数组进行赋值操做。这样作就让get操做从同步中解脱出来。由于更改的数据并无发生在get所需的数组中。而是放生在新生成的副本中,因此不须要同步。但应该注意的是,尽管如此,get操做仍是可能会读取到脏数据的。编程

CopyOnWriteArrayList的另外一特色是容许多线程遍历,且其它线程更改数据并不会致使遍历线程抛出ConcurrentModificationException 异常,来看下iterator()数组

1
2
3
4
public Iterator<E> iterator() {
Object[] snapshot = elements;
return new CowIterator<E>(snapshot, 0 , snapshot.length);
}

这个CowIterator 是 ListIterator的子类,这个Iterator的特色是它并不支持对数据的更改操做:安全

1
2
3
4
5
6
7
8
9
public void add(E object) {
throw new UnsupportedOperationException();
}
public void remove() {
throw new UnsupportedOperationException();
}
public void set(E object) {
throw new UnsupportedOperationException();
}

这样作的缘由也很容易理解,咱们能够简单地的认为CowIterator中的snapshot是不可变数组,由于list中有数据更新都会生成新数组,而不会改变snapshot, 因此此时Iterator没办法再将更改的数据写回list了。同理,list数据有更新也不会反映在CowIterator中。CowIterator只是保证其迭代过程不会发生异常。微信

CAS之ConcurrentHashMap(JDK1.8)

CAS是Compare and Swap的简写,即比较与替换,CAS造做将比较和替换封装为一组原子操做,不会被外部打断。这种原子操做的保证每每由处理器层面提供支持。多线程

在Java中有一个很是神奇的Unsafe类来对CAS提供语言层面的接口。但类如其名,此等神器若是使用不当,会形成武功尽失的,因此Unsafe不对外开放,想使用的话须要经过反射等技巧。这里不对其作展开。介绍它的缘由是由于它是JDK1.8中ConcurrentHashMap的实现基础。并发

ConcurrentHashMapHashMap对数据的存储有着类似的地方,都采用数组+链表+红黑树的方式。基本逻辑是内部使用Node来保存map中的一项key, value结构,对于hash不冲突的key,使用数组来保存Node数据,而每一项Node都是一个链表,用来保存hash冲突的Node,当链表的大小达到必定程度会转为红黑树,这样会使在冲突数据较多时也会有比较好的查询效率。函数

了解了ConcurrentHashMap的存储结构后,咱们来看下在这种结构下,ConcurrentHashMap是如何实现高效的并发操做,这得益于ConcurrentHashMap中的以下三个函数。

1
2
3
4
5
6
7
8
9
10
static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) {
return (Node<K,V>)U.getObjectVolatile(tab, (( long )i << ASHIFT) + ABASE);
}
static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i,
Node<K,V> c, Node<K,V> v) {
return U.compareAndSwapObject(tab, (( long )i << ASHIFT) + ABASE, c, v);
}
static final <K,V> void setTabAt(Node<K,V>[] tab, int i, Node<K,V> v) {
U.putOrderedObject(tab, (( long )i << ASHIFT) + ABASE, v);
}

其中的U就是咱们前文提到的Unsafe的一个实例,这三个函数都经过Unsafe的几个方法保证了是原子性:

  • tabAt做用是返回tab数组第i项
  • casTabAt函数是对比tab第i项是否与c相等,相等的话将其设置为v。
  • setTabAt将tab的第i项设置为v

有了这三个函数就能够保证ConcurrentHashMap的线程安全吗?并非的,ConcurrentHashMap内部也使用比较多的synchronized,不过与HashTable这种对全部操做都使用synchronized不一样,ConcurrentHashMap只在特定的状况下使用synchronized,来较少锁的定的区域。来看下putVal方法(精简版):

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
final V putVal(K key, V value, boolean onlyIfAbsent) {
if (key == null || value == null ) throw new NullPointerException();
int hash = spread(key.hashCode());
int binCount = 0 ;
for (Node<K,V>[] tab = table;;) {
Node<K,V> f; int n, i, fh;
if (tab == null || (n = tab.length) == 0 )
tab = initTable();
else if ((f = tabAt(tab, i = (n - 1 ) & hash)) == null ) {
if (casTabAt(tab, i, null ,
new Node<K,V>(hash, key, value, null )))
break ; // no lock when adding to embin
}
else if ((fh = f.hash) == MOVED)
tab = helpTransfer(tab, f);
else {
V oldVal = null ;
synchronized (f) {
....
}
}
}
addCount(1L, binCount);
return null ;
}

整个put流程大体以下:

  • 判断key与value是否为空,为空抛异常
  • 计算kek的hash值,而后进入死循环,通常来说,caw算法与死循环是搭档。
  • 判断table是否初始化,未初始化进行初始化操做
  • Node在table中的目标位置是否为空,为空的话使用caw操做进行赋值,固然,这种赋值是有可能失败的,因此前面的死循环发挥了重试的做用。
  • 若是当前正在扩容,则尝试协助其扩容,死循环再次发挥了重试的做用,有趣的是ConcurrentHashMap是能够多线程同时扩容的。这里说协助的缘由在于,对于数组扩容,通常分为两步:1.新建一个更大的数组;2.将原数组数据copy到新数组中。对于第一步,ConcurrentHashMap经过CAW来控制一个int变量保证新建数组这一步只会执行一次。对于第二步,ConcurrentHashMap采用CAW + synchronized + 移动后标记 的方式来达到多线程扩容的目的。感兴趣能够查看transfer函数。
  • 最后的一个else分支,黑科技的流程已尝试无效,目标Node已经存在值,只能锁住当前Node来进行put操做,固然,这里省略了不少代码,包括链表转红黑树的操做等等。

相比于put,get的代码更好理解一下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
public V get(Object key) {
Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
int h = spread(key.hashCode());
if ((tab = table) != null && (n = tab.length) > 0 &&
(e = tabAt(tab, (n - 1 ) & h)) != null ) {
if ((eh = e.hash) == h) {
if ((ek = e.key) == key || (ek != null && key.equals(ek)))
return e.val;
}
else if (eh < 0 )
return (p = e.find(h, key)) != null ? p.val : null ;
while ((e = e.next) != null ) {
if (e.hash == h &&
((ek = e.key) == key || (ek != null && key.equals(ek))))
return e.val;
}
}
return null ;
}
  • 检查表是否为空
  • 获取key的hash h,获取key在table中对应的Node e
  • 判断Node e的第一项是否与预期的Node相等,相等话, 则返回e.val
  • 若是e.hash < 0, 说明e为红黑树,调用e的find接口来进行查找。
  • 走到这一步,e为链表无疑,且第一项不是须要查询的数据,一直调用next来进行查找便可。

读写分离之LinkedBlockingQueue

还有一种实现线程安全的方式是经过将读写进行分离,这种方式的一种实现是LinkedBlockingQueueLinkedBlockingQueue总体设计的也十分精巧,它的全局变量分为三类:

  • final 型
  • Atomic 型
  • 普通变量

final型变量因为声明后就不会被修改,因此天然线程安全,Atomic型内部采用了cas模型来保证线程安全。对于普通型变量,LinkedBlockingQueue中只包含head与last两个表示队列的头与尾。而且私有,外部没法更改,因此,LinkedBlockingQueue只须要保证head与last的安全便可保证真个队列的线程安全。而且LinkedBlockingQueue属于FIFO型队列,通常状况下,读写会在不一样元素上工做,因此, LinkedBlockingQueue定义了两个可重入锁,巧妙的经过对head与last分别加锁,实现读写分离,来实现良好的安全并发特性:

1
2
3
4
5
6
7
8
/** Lock held by take, poll, etc */
private final ReentrantLock takeLock = new ReentrantLock();
/** Wait queue for waiting takes */
private final Condition notEmpty = takeLock.newCondition();
/** Lock held by put, offer, etc */
private final ReentrantLock putLock = new ReentrantLock();
/** Wait queue for waiting puts */
private final Condition notFull = putLock.newCondition();

首先看下它的offer 方法:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
public boolean offer(E e) {
if (e == null ) throw new NullPointerException();
final AtomicInteger count = this .count;
if (count.get() == capacity)
return false ;
int c = - 1 ;
Node<E> node = new Node<E>(e);
final ReentrantLock putLock = this .putLock;
putLock.lock();
try {
if (count.get() < capacity) {
enqueue(node);
c = count.getAndIncrement();
if (c + 1 < capacity)
notFull.signal();
}
} finally {
putLock.unlock();
}
if (c == 0 )
signalNotEmpty();
return c >= 0 ;
}

可见,在对队列进行添加元素时,只须要对putLock进行加锁便可,保证同一时刻只有一个线程能够对last进行插入。一样的,在从队列进行提取元素时,也只须要获取takeLock锁来对head操做便可:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
public E poll() {
final AtomicInteger count = this .count;
if (count.get() == 0 )
return null ;
E x = null ;
int c = - 1 ;
final ReentrantLock takeLock = this .takeLock;
takeLock.lock();
try {
if (count.get() > 0 ) {
x = dequeue();
c = count.getAndDecrement();
if (c > 1 )
notEmpty.signal();
}
} finally {
takeLock.unlock();
}
if (c == capacity)
signalNotFull();
return x;
}
LinkedBlockingQueue总体仍是比较好理解的,但有几个点须要特殊注意:
  • LinkedBlockingQueue是一个阻塞队列,当队列无元素为空时,全部取元素的线程会经过notEmpty 的await()方法进行等待,直到再次有数据enqueue时,notEmpty发出signal信号。对于队列达到上限时也是同理。
  • 对于remove,contains,toArray, toString, clear之类方法,会调用fullyLock方法,来同时获取读写锁。但对于size方法,因为队列内部维护了AtomicInteger类型的count变量,是不须要加锁进行获取的。
3
相关文章
相关标签/搜索