LR 算法总结--斯坦福大学机器学习公开课学习笔记

 

 

在有监督学习里面有几个逻辑上的重要组成部件[3],初略地分能够分为:模型,参数 和 目标函数。(此部分转自 XGBoost 与 Boosted Tree)html

1、模型和参数 
  模型指给定输入xi如何去预测 输出 yi。咱们比较常见的模型如线性模型(包括线性回归和logistic regression)采用算法

2、目标函数:损失 + 正则机器学习

模型和参数自己指定了给定输入咱们如何作预测,可是没有告诉咱们如何去寻找一个比较好的参数,这个时候就须要目标函数登场了。通常的目标函数包含下面两项函数

 常见的偏差函数有平方偏差、交叉熵等,而对于线性模型常见的正则化项有L2正则和L1正则。工具

 3、优化算法学习

讲了这么多有监督学习的基本概念,为何要讲这些呢? 是由于这几部分包含了机器学习的主要成分,也是机器学习工具设计中划分模块比较有效的办法。其实这几部分以外,还有一个优化算法,就是给定目标函数以后怎么学的问题。之因此我没有讲优化算法,是由于这是你们每每比较熟悉的“机器学习的部分”。而有时候咱们每每只知道“优化算法”,而没有仔细考虑目标函数的设计的问题,比较常见的例子如决策树的学习,你们知道的算法是每一步去优化gini entropy,而后剪枝,可是没有考虑到后面的目标是什么。优化

 而后看逻辑回归(LR)算法,主要参考斯坦福大学机器学习公开课,http://www.iqiyi.com/playlist399002502.html设计

逻辑回归是一种分类算法,而不是一种回归。逻辑回归采用sigmod函数,这是一个自变量取值在整个实数空间,因变量取值在0-1之间的函数,能够将变量的变化映射到0-1之间,从而得到几率值。3d

sigmod函数形式以下htm

 

经过将代入sigmod函数,能够获得以下形式:

这样咱们获得了模型和参数,下一步咱们肯定目标函数,逻辑回归的损失函数是交叉熵函数,求得参数采用的优化算法是最大似然。

假设

能够更加简洁的写做

根据最大似然算法,所求的模型应该使得取得样本的状况的几率越大越好,假设样本相互之间都是独立的,则能够以下表示用模型取得样本状况的几率

也就是独立事件同时发生的几率。为了方便处理,取log则 

 这也就是逻辑回归的损失函数。

 求解这个目标函数采用随机梯度降低的方法便可,

 

 因为sigmod函数的以下特性

能够简单的将求梯度的式子简化以下

 

这样就能够经过样本不停的更新,直至找到知足要求的参数。

 

 

 

 

3: Principles of Data Mining, David Hand et al,2001. Chapter 1.5 Components of Data Mining Algorithms, 将数据挖掘算法解构为四个组件:1)模型结构(函数形式,如线性模型),2)评分函数(评估模型拟合数据的质量,如似然函数,偏差平方和,误分类率),3)优化和搜索方法(评分函数的优化和模型参数的求解),4)数据管理策略(优化和搜索时对数据的高效访问)。 

相关文章
相关标签/搜索