深度学习框架-caffe安装
[Mac OSX 10.12]php
【参考资源】
1.英文原文:(使用GPU)
[http://hoondy.com/2015/04/03/how-to-install-caffe-on-mac-os-x-10-10-for-dummies-like-me/]
2.基于1的两篇中文博客:
[http://ylzhao.blogspot.kr/2015/04/mac-os-x-1010caffe.html]
[http://www.jianshu.com/p/8795b882ea67]
3.无GPU,仅使用CPU的状况下的配置
[http://blog.csdn.net/u014696921/article/details/52156552]
[http://www.phperz.com/article/16/1006/298567.html]html
系统:MacBook Pro OS X Sierra 版本10.12.2
CPU:2.7 GHz Intel Core i5
显卡:Intel Iris Graphics 6100 1536 MBpython
若是显卡是NVIDIA的,可使用GPU,须要安装cuda,cuda driver和cuDNN GPU库,而且在Makefile配置成使用GPU。参考资源中【1】【2】是有NVIDIA显卡的因此安装了cuda,cuda driver和cuDNN GPU库,最后的caffe的Makefile.config文件中配置成使用GPU。git
因为我电脑配置的不是NVIDIA显卡,因此不能使用cuda加速了,因此只能安装个CPU模式。能够忽略安装cuda,cuda driver和cuDNN的安装步骤,最后的caffe的Makefile.config文件中配置成仅使用CPU。github
1. 根据 http://brew.sh/ 上面的说明安装Homebrew包管理
1. 从https://store.continuum.io/cshop/anaconda/下载和安装Anaconda Python包(其中包括Caffe框架用到的hdf5) 2. export PATH=~/anaconda/bin:$PATH
1. 因为Mac OS X操做系统自带的BLAS库存在一些不稳定的问题,所以我选择安装Intel MKL库。若是你是在校大学生,可使用学校邮箱从https://software.intel.com/en-us/qualify-for-free-software/student页面申请Intel Parallel Studio XE 2017安装包(后面不要忘记在Makefile.config中设置BLAS:=MKL) 2. 确保在安装Intel Parallel XE时选择每个组件(由于缺省状况下不会安装MKL组件) 3. cd /opt/intel/mkl/lib/ 4. sudo ln -s . /opt/intel/mkl/lib/intel64(由于在编译Caffe时Caffe会从MKL的intel64目录中去搜索mkl的库,可是在安装MKL后,MKL的lib目录下并无intel64这个目录,因此须要创建一个intel64目录到lib目录的软连接)
brew edit opencv 在自动打开的vim编辑器中将下面两行 args << "-DPYTHON#{py_ver}_LIBRARY=#{py_lib}/libpython2.7.#{dylib}" args << "-DPYTHON#{py_ver}_INCLUDE_DIR=#{py_prefix}/include/python2.7" 替换为 args << "-DPYTHON_LIBRARY=#{py_prefix}/lib/libpython2.7.dylib" args << "-DPYTHON_INCLUDE_DIR=#{py_prefix}/include/python2.7"
vim中具体操做是:
i 从当前光标处进入插入模式,开始修改内容,esc 退出插入模式,:wq 保存修改并退出。shell
brew install --fresh -vd snappy leveldb gflags glog szip lmdb homebrew/science/opencv brew install --build-from-source --with-python --fresh -vd protobuf brew install --build-from-source --fresh -vd boost boost-python
git clone https://github.com/BVLC/caffe.git cd caffe cp Makefile.config.example Makefile.config
1. 设置BLAS := mkl(BLAS (使用intel mkl仍是OpenBLAS)) 2. 取消USE_CUDNN := 1注释 3. 检查并设置Python路径 - 首先修改文件权限:chmod g+w Makefile.config - 打开文件进行修改:sudo vim Makefile.config ;按“i”键开始修改,修改 :将# CPU_ONLY = 1前面的#去掉( 因为我没有NVIDIA的显卡,就没有安装CUDA,所以须要打开这个选项) 并按“tab”键,(默认从tab处执行),设置BLAS := mkl,检查并设置python路径,修改结束后按esc键,键入“:wq”保存并退出;
Refer to http://caffe.berkeleyvision.org/installation.htmlvim
# Contributions simplifying and improving our build system are welcome! # cuDNN acceleration switch (uncomment to build with cuDNN). # USE_CUDNN := 1 # CPU-only switch (uncomment to build without GPU support). CPU_ONLY := 1 # uncomment to disable IO dependencies and corresponding data layers # USE_OPENCV := 0 # USE_LEVELDB := 0 # USE_LMDB := 0 # uncomment to allow MDB_NOLOCK when reading LMDB files (only if necessary) # You should not set this flag if you will be reading LMDBs with any # possibility of simultaneous read and write # ALLOW_LMDB_NOLOCK := 1 # Uncomment if you're using OpenCV 3 # OPENCV_VERSION := 3 # To customize your choice of compiler, uncomment and set the following. # N.B. the default for Linux is g++ and the default for OSX is clang++ # CUSTOM_CXX := g++ # CUDA directory contains bin/ and lib/ directories that we need. CUDA_DIR := /usr/local/cuda # On Ubuntu 14.04, if cuda tools are installed via # "sudo apt-get install nvidia-cuda-toolkit" then use this instead: # CUDA_DIR := /usr # CUDA architecture setting: going with all of them. # For CUDA < 6.0, comment the *_50 lines for compatibility. CUDA_ARCH := -gencode arch=compute_20,code=sm_20 \ -gencode arch=compute_20,code=sm_21 \ -gencode arch=compute_30,code=sm_30 \ -gencode arch=compute_35,code=sm_35 \ -gencode arch=compute_50,code=sm_50 \ -gencode arch=compute_50,code=compute_50 # BLAS choice: # atlas for ATLAS (default) # mkl for MKL # open for OpenBlas BLAS := mkl # Custom (MKL/ATLAS/OpenBLAS) include and lib directories. # Leave commented to accept the defaults for your choice of BLAS # (which should work)! # BLAS_INCLUDE := /path/to/your/blas # BLAS_LIB := /path/to/your/blas # Homebrew puts openblas in a directory that is not on the standard search path # BLAS_INCLUDE := $(shell brew --prefix openblas)/include # BLAS_LIB := $(shell brew --prefix openblas)/lib # This is required only if you will compile the matlab interface. # MATLAB directory should contain the mex binary in /bin. # MATLAB_DIR := /usr/local # MATLAB_DIR := /Applications/MATLAB_R2012b.app # NOTE: this is required only if you will compile the python interface. # We need to be able to find Python.h and numpy/arrayobject.h. PYTHON_INCLUDE := /usr/include/python2.7 \ /usr/lib/python2.7/dist-packages/numpy/core/include # Anaconda Python distribution is quite popular. Include path: # Verify anaconda location, sometimes it's in root. ANACONDA_HOME := $(HOME)/anaconda PYTHON_INCLUDE := $(ANACONDA_HOME)/include/python2.7 \ $(ANACONDA_HOME)/lib/python2.7/site-packages/numpy/core/include \ $(ANACONDA_HOME)/include \ # Uncomment to use Python 3 (default is Python 2) # PYTHON_LIBRARIES := boost_python3 python3.5m # PYTHON_INCLUDE := /usr/include/python3.5m \ # /usr/lib/python3.5/dist-packages/numpy/core/include # We need to be able to find libpythonX.X.so or .dylib. # PYTHON_LIB := /usr/lib PYTHON_LIB := $(ANACONDA_HOME)/lib # Homebrew installs numpy in a non standard path (keg only) # PYTHON_INCLUDE += $(dir $(shell python -c 'import numpy.core; print(numpy.core.__file__)'))/include # PYTHON_LIB += $(shell brew --prefix numpy)/lib # Uncomment to support layers written in Python (will link against Python libs) # WITH_PYTHON_LAYER := 1 # Whatever else you find you need goes here. INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib # If Homebrew is installed at a non standard location (for example your home directory) and you use it for general dependencies # INCLUDE_DIRS += $(shell brew --prefix)/include # LIBRARY_DIRS += $(shell brew --prefix)/lib # Uncomment to use `pkg-config` to specify OpenCV library paths. # (Usually not necessary -- OpenCV libraries are normally installed in one of the above $LIBRARY_DIRS.) # USE_PKG_CONFIG := 1 # N.B. both build and distribute dirs are cleared on `make clean` BUILD_DIR := build DISTRIBUTE_DIR := distribute # Uncomment for debugging. Does not work on OSX due to https://github.com/BVLC/caffe/issues/171 # DEBUG := 1 # The ID of the GPU that 'make runtest' will use to run unit tests. TEST_GPUID := 0 # enable pretty build (comment to see full commands) Q ?= @
1. export DYLD_FALLBACK_LIBRARY_PATH=/usr/local/cuda/lib:$HOME/anaconda/lib:/usr/local/lib:/usr/lib:/opt/intel/composer_xe_2015.2.132/compiler/lib:/opt/intel/composer_xe_2015.2.132/mkl/lib
export DYLD_FALLBACK_LIBRARY_PATH=$HOME/caffe/.build_release/lib:/usr/local/cuda/lib:$HOME/anaconda/lib:/usr/local/lib:/usr/lib:/opt/intel/compilers_and_libraries_2017.1.126/mac/compiler/lib:/opt/intel/compilers_and_libraries_2017.1.126/mac/mkl/lib/
make clean make all make test make runtest make pycaffe make distribute